前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇繼電保護特色范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
面對經濟發展速度日漸加快的現狀,對于電力能源的需求也日趨加大,所以電力工程面臨著負荷運轉的狀態,因此提高電力系統的安全性是當前要考慮的重點內容,所以繼電保護裝置的應用顯得尤為重要。繼電保護技術在保障電力系統安全性的同時還能夠使故障發生的概率降低,從而提高電力系統的經濟性,尤其是近年來隨著單片機技術以及計算機技術等不斷發展,繼電保護技術也日趨成熟。筆者結合自身的實際經驗針對電力系統繼電保護的現狀進行分析,再對未來發展做出探討。
1 電力系統繼電保護的發展現狀
1.1 機電式繼電保護階段
在建國之后我國在電力系統繼電保護方面進行了深入的探究,用了將近十年的時間就達到了發達國家大半個世紀的研究水平,經歷了繼電保護設計與學科從無到有的過程。比較重要的時間段是20世紀50年代時,我國的工程技術人員通過自己的刻苦鉆研以及借鑒國外先進的繼電保護技術,形成了符合我國自身發展的繼電保護理論,并且總結了十分豐富的繼電保護經驗,到那時為止已經建立了既有深厚的理論支撐又有豐富經驗的繼電保護技術隊伍,為日后國內繼電保護技術的發展打下了堅實的基礎。到20實際60年代時,我國已經具備完整的繼電保護研究、設計以及教學等多方面的體系,迎來了繼電保護的繁榮時代。
1.2 晶體管式繼電保護階段
晶體管繼電保護的正式開始研究在上個世紀50年代末期,晶體管大量應用于繼電保護是在20世紀60代到80年之間,晶體管式繼電保護得到了蓬勃的發展。標志性的事件是葛洲壩500kv線路應用的晶體管高頻閉鎖距離保護技術,這種技術是由天津大學與南京電力自動化設備廠合理研究的,該項技術的應用標志著我國告別了500kv線路完全依靠國外進口的狀態。
1.3 集成電路式繼電保護階段
隨著上個世紀70年代基于集成運算放大器的集成電路研究起步,到200世紀80年代時我國的集成電路繼電保護就已經形成了完整的體系,晶體管式的繼電保護也逐漸被取代,這一階段屬于集成電路保護的時代。
1.4 計算機式繼電保護階段
伴隨著計算機技術的發展,在上個世紀70年代計算機技術已經逐漸應用于繼電保護方面,許多高等院校以及研究院都很重視計算機技術在繼電保護方面的應用,并且都研制出了不同原理與樣式的微機保護裝置。華北電力學院在1984年研制的輸電線路微機保護裝置在系統中獲得了大范圍的應用,為計算機式繼電保護的發展揭開了新的篇章。到目前為止,微機線路的設備呈現原理多樣化與機型多樣化的趨勢,它們各具特色,如今我國繼電保護已經變為計算機保護時代。
2 電力系統繼電保護發展趨勢
2.1 智能化發展
隨著計算機技術的突飛猛進以及計算機技術在繼電保護系統領域中應用的逐漸擴展,尤其是近年來許多新型的控制原理與方法不斷被應用到計算機繼電保護中來,類似于人工神經網絡、模糊邏輯以及專家理論等人工智能技術在電力系統的很多領域中都有應用,尤其推動了繼電保護的研究向更高層次的方向發展。人工智能技術的發展為繼電保護注入了新的元素,將多種人工智能技術結合,可以提高繼電保護的可靠性,同時也為今后的繼電保護發展指出了一個新方向。如今計算機以及通信等各種技術的快速發展也推動了繼電保護技術的進步,可以預見出人工智能技術必將會廣泛應用于繼電保護領域之中,將常規方法難以解決的問題變得簡單化。
2.2 計算機化發展
計算機硬件的性能可以根據摩爾定律算出,即芯片的集成度每隔18-24個月便會翻一番,因此硬件性能是成倍增加的,而當前的芯片的價格也是逐漸降低的。另外,單片化以及功能的不斷強大是當前微處理機的主要發展趨勢,所以一方面片內的硬件資源得到了大幅度的擴充,另一方面,單片機與DSP芯片二者在技術上也得到了融合,所以在運算能力上得到了顯著的提高。在實際的使用過程中計算機保護的正確率也要遠遠高于其它模式,如今繼電保護裝置的計算機化已經成為了不可改變的趨勢。
2.3 網絡化發展
通過計算機網絡可以實現線路保護、變壓器保護等多方面功能,另外,與其它保護方式相比網絡保護可以實現數據共享,另外,在母線的保護方面,由于分站保護系統采集了該站所有斷路器的電流量、母線電壓量,所以相比之下實現起來也更為容易。作為一種新的繼電保護形式,網絡式的繼電保護是計算機保護技術發展的必然趨勢,該模式的保護技術以通信技術、網絡技術以及計算機技術為基礎,主要針對省級或者市級主干網絡的拓撲結構而言。
關鍵詞:繼電保護;現狀;發展
中圖分類號:TP
文獻標識碼:A
文章編號:1672-3198(2010)09-0331-01
1 繼電保護發展現狀
電力系統的飛速發展對繼電保護不斷提出新的要求,電子技術、計算機技術與通信技術的飛速發展又為繼電保護技術的發展不斷地注入了新的活力。
我國從70年代末即已開始了計算機繼電保護的研究,高等院校和科研院所起著先導的作用。1984年原華北電力學院研制的輸電線路微機保護裝置首先通過鑒定,揭開了我國繼電保護發展史上新的一頁。在主設備保護方面,東南大學和華中理工大學研制的發電機失磁保護、發電機保護。變壓器組保護也相繼于1989、1994年通過鑒定,投入運行。至此,不同原理、不同機型的微機線路和主設備保護各具特色,為電力系統提供了一批新一代性能優良、功能齊全、工作可靠的繼電保護裝置。可以說從90年代開始我國繼電保護技術已進入了微機保護的時代。
2 繼電保護的未來發展
繼電保護技術未來趨勢是向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。
2.1 計算機化
隨著計算機硬件的迅猛發展,微機保護硬件也在不斷發展。電力系統對微機保護的要求不斷提高,除了保護的基本功能外,還應具有大容量故障信息和數據的長期存放空間,快速的數據處理功能,強大的通信能力,與其它保護、控制裝置和調度聯網以共享全系統數據、信息和網絡資源的能力,高級語言編程等。這就要求微機保護裝置具有相當于一臺PC機的功能。
繼電保護裝置的微機化、計算機化是不可逆轉的發展趨勢。但對如何更好地滿足電力系統要求,如何進一步提高繼電保護的可靠性,如何取得更大的經濟效益和社會效益,尚須進行具體深入的研究。
2.2 網絡化
計算機網絡作為信息和數據通信工具已成為信息時代的技術支柱,使人類生產和社會生活的面貌發生了根本變化。它深刻影響著各個工業領域,也為各個工業領域提供了強有力的通信手段。顯然,實現這種系統保護的基本條件是將全系統各主要設備的保護裝置用計算機網絡聯接起來,亦即實現微機保護裝置的網絡化。這在當前的技術條件下是完全可能的。
由上述可知,微機保護裝置網絡化可大大提高保護性能和可靠性,這是微機保護發展的必然趨勢
2.3 保護、控制、測量、數據通信一體化
在實現繼電保護的計算機化和網絡化的條件下,保護裝置實際上就是一臺高性能、多功能的計算機,是整個電力系統計算機網絡上的一個智能終端。它可從網上獲取電力系統運行和故障的任何信息和數據,也可將它所獲得的被保護元件的任何信息和數據傳送給網絡控制中心或任一終端。因此,每個微機保護裝置不但可完成繼電保護功能,而且在無故障正常運行情況下還可完成測量、控制、數據通信功能,亦即實現保護、控制、測量、數據通信一體化。
目前,為了測量、保護和控制的需要,室外變電站的所有設備都必須用控制電纜引到主控室。所敷設的大量控制電纜不但要大量投資,而且使二次回路非常復雜。但是如果將上述的保護、控制、測量、數據通信一體化的計算機裝置,就地安裝在室外變電站的被保護設備旁,通過計算機網絡送到主控室,則可免除大量的控制電纜。如果用光纖作為網絡的傳輸介質,還可免除電磁干擾。現在光電流互感器(OTA)和光電壓互感器(OTV)已在研究試驗階段,將來必然在電力系統中得到應用。OTA和OTV的光信號輸入到此一體化裝置中并轉換成電信號后,一方面用作保護的計算判斷;另一方面作為測量量,通過網絡送到主控室。從主控室通過網絡可將對被保護設備的操作控制命令送到此一體化裝置,由此一體化裝置執行斷路器的操作。
2.4 智能化
近年來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,在繼電保護領域應用的研究也已開始。神經網絡是一種非線性映射的方法,很多難以列出方程式或難以求解的復雜的非線性問題,應用神經網絡方法則可迎刃而解。例如在輸電線兩側系統電勢角度擺開情況下發生經過渡電阻的短路就是一非線性問題,距離保護很難正確作出故障位置的判別,從而造成誤動或拒動;如果用神經網絡方法,經過大量故障樣本的訓練,只要樣本集中充分考慮了各種情況,則在發生任何故障時都可正確判別。其它如遺傳算法、進化規劃等也都有其獨特的求解復雜問題的能力。將這些人工智能方法適當結合可使求解速度更快。天津大學從1996年起進行神經網絡式繼電保護的研究,已取得初步成果。可以預見,人工智能技術在繼電保護領域必會得到應用,以解決用常規方法難以解決的問題。
【關鍵詞】農村電網;繼電保護;配置;可靠性
1 繼電保護技術發展的歷史概況
電力系統技術的發展對繼電保護提出了新的要求,電子技術、計算機技術與通信技術的發展又為繼電保護技術的發展注入了新的動力,繼電保護技術的發展,也是科技實力的發展。
建國后,我國繼電保護學科、繼電保護設計、繼電器制造工業和繼電保護技術隊伍從無到有,在大約10年的時間里走過了先進國家半個世紀走過的道路。20世紀50年代,我國工程技術人員創造性地吸收、消化、掌握了國外先進的繼電保護設備性能和運行技術,建成了一支具有深厚繼電保護理論造詣和豐富運行經驗的繼電保護技術隊伍,對全國繼電保護技術隊伍的建立和成長起了指導作用。在引進消化了當時國外先進的繼電器制造技術后,建立了我國自己的繼電器制造業。在60年代中期我國已建成了繼電保護研究、設計、制造、運行和教學的完整體系。這是機電式繼電保護繁榮的時代,為我國繼電保護技術的發展奠定了堅實基礎。
20世紀50年代末,晶體管繼電保護已開始研究。60年代中期到80年代中期是晶體管繼電保護蓬勃發展和廣泛采用的時代。我國研制的500kV晶體管方向高頻保護和晶體管高頻閉鎖距離保護的成功運行,結束了500kV線路保護依靠進口的時代。從70年代中期,基于集成運算放大器的集成電路保護已開始研究。到80年代末集成電路保護已形成完整系列,逐漸取代晶體管保護。到90年代初集成電路保護的研制、生產、應用仍處于主導地位,這是集成電路保護時代。
20世紀70年代末開始計算機繼電保護的研究,高等院校和科研院所起著先導的作用。1984年原華北電力學院研制的輸電線路微機保護裝置首先通過鑒定,并在系統中獲得應用,揭開了我國繼電保護發展史上新的一頁,為微機保護的推廣開辟了道路。在主設備保護方面,東南大學和華中理工大學研制的發電機失磁保護、發電機保護和發電機變壓器組保護也相繼于l989年、l994年通過鑒定并投入運行。南京電力自動化研究院研制的微機線路保護裝置也于1991年通過鑒定。天津大學與南京電力自動化設備廠合作研制的微機相電壓補償式方向高頻保護,西安交通大學與許昌繼電器廠合作研制的正序故障分量方向高頻保護也相繼于l993年、l996年通過鑒定。至此,不同原理、不同機型的微機線路和主設備保護各具特色,為電力系統提供了一批新一代性能優良、功能齊全、工作可靠的繼電保護裝置。隨著微機保護裝置的研究,在微機保護軟件、算法等方面也取得了很多理論成果。從90年代開始我國繼電保護技術已進入了微機保護的時代,開始走上高科技的發展時代。
2 繼電保護技術的發展前景
智能化進入20世紀90年代以來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,電力系統保護領域內的一些研究工作也轉向人工智能的研究。專家系統、人工神經網絡(ANN)和模糊控制理論逐步應用于電力系統繼電保護中,為繼電保護的發展注入了活力。隨著計算機技術的飛速發展以及計算機在電力系統繼電保護領域中的普遍應用,新的控制原理和方法被不斷應用于計算機繼電保護中,以期取得更好的效果,從而使微機繼電保護的研究向更高的層次發展,其未來趨勢向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。微計算機硬件的更新和網絡化發展在計算機領域,發展速度最快的當屬計算機硬件,按照著名的摩爾定律,芯片上的集成度每隔18~24個月翻一番。其結果是不僅計算機硬件的性能成倍增加,價格也在迅速降低。微處理機的發展主要體現在單片化及相關功能的極大增強,片內硬件資源得到很大擴充,單片機與DSP芯片二者技術上的融合,運算能力的顯著提高以及嵌入式網絡通信芯片的出現及應用等方面。這些發展使硬件設計更加方便,高性價比使冗余設計成為可能,為實現靈活化、高可靠性和模塊化的通用軟硬件平臺創造了條件。硬件技術的不斷更新,使微機保護對技術升級的開放性有了迫切要求。未來的繼電保護技術、變電所綜合自動化技術現代計算機技術、通信技術和網絡技術為改變變電站目前監視、控制、保護和計量裝置及系統分割的狀態提供了優化組合和系統集成的技術基礎。高壓、超高壓變電站正面臨著一場技術創新。實現繼電保護和綜合自動化的緊密結合,它表現在集成與資源共享、遠方控制與信息共享。以遠方終端單元(RTu)、微機保護裝置為核心,將變電所的控制、信號、測量、計費等回路納入計算機系統,取代傳統的控制保護屏,能夠降低變。
自適應繼電保護的概念始于20世紀80年代,它可定義為能根據電力系統運行方式和故障狀態的變化而實時改變保護性能、特性或定值的新型繼電保護。自適應繼電保護的基本思想是使保護能盡可能地適應電力系統的各種變化,進一步改善保護的性能。這種新型保護原理的出現引起了人們的極大關注和興趣,是微機保護具有生命力和不斷發展的重要內容。自適應繼電保護具有改善系統的響應、增強可靠性和提高經濟效益等優點,在輸電線路的距離保護、變壓器保護、發電機保護、自動重合閘等領域內有著廣泛的應用前景。隨著電力系統的高速發展和計算機技術、通信技術的進步,繼電保護技術面臨著進一步發展的趨勢。其發展將出現原理突破和應用革命,由數字時代跨入信息化時代,發展到一個新的水平。未來中國電力系統繼電保護技術的發展前景,會以嶄新的姿態走在世界前列。
3 10KV線路保護中容易被忽視的問題及解決方法
(1)10kV線路如裝有大量的配電變壓器,在線路投入時,這些配電變壓器是掛在線路上,在合閘瞬間,各變壓器所產生的勵磁涌流在線路上相互迭加、來回反射,產生了一個復雜的電磁暫態過程,在系統阻抗較小時,會出現較大的涌流,時間常數也較大。二段式電流保護中的電流速斷保護由于要兼顧靈敏度,動作電流值往往取得較小,特別在長線路或系統阻抗大時更明顯。勵磁涌流值可能會大于裝置整定值,使保護誤動。這種情況在線路變壓器個數少、容量小以及系統阻抗大時并不突出,因此容易被忽視,但當線路變壓器個數及容量增大后,就可能出現。
勵磁涌流的特征,就是它含有大量的二次諧波,另一特征就是它的大小隨時間而衰減,一開始涌流很大,一段時間后涌流衰減為零,流過保護裝置的電流為線路負荷電流,利用涌流這個特點,在電流速斷保護加入一短時間延時,一般為0.15~0.2s的時限,就可以防止勵磁涌流引起的誤動作,這樣雖然會增加故障時間,但在對穩定運行影響較小的地方還是適用的。
(2)10kV線路出口處短路電流一般都較小,特別是農網中的變電所,它們往往遠離電源,系統阻抗較大。對于同一線路,出口處短路電流大小會隨著系統規模及運行方式改變而改變。隨著系統規模的不斷擴大,10kV系統短路電流會隨著變大,可以達到TA一次額定電流的幾百倍,系統中原有一些能正常運行的變比小的TA就可能飽和;另一方面,短路電流中含大量非周期分量,又會進一步加速TA飽和。在10kV線路短路時,由于TA飽和,感應到二次側的電流會很小或接近于零,使保護裝置拒動,影響供電可靠性,而且嚴重威脅運行設備的安全。
避免TA飽和一是在選擇TA時,變比不能選得太小,要考慮線路短路時TA飽和問題,一般10kV線路保護TA變比最好大于300/5。另一方面要盡量減少TA二次負載阻抗,盡量避免保護和計量共用TA,縮短TA二次電纜長度及加大二次電纜截面等,就能很好的防止TA飽和現象。
[關鍵詞]電氣工程 智能系統 繼電保護 專家系統
中圖分類號:F407文獻標識碼: A
一、 引言
把人工智能技術與計算機技術相結臺,用電氣工程智能系統來使電氣CAD 系統具有更高的智能,從而改變傳統的設計觀念與手法,使高新技術在電氣工程設計
中得以發揮。電氣工程智能系統在繼電保護中得到了應用,但專家系統在數據結構和類型知識的描述方面存在不足,針對不足提出了設計條件和設計對象及設計目標數據結構的通用知識表示方法,使其得到了改進。
二、繼電保護發展現狀
電力系統的飛速發展對繼電保護不斷提出新的要求,電子技術、計算機技術與通信技術的飛速發展又為繼電保護技術的發展不斷地注入了新的活力,因此,繼電保護技術得天獨厚,在40余年的時間里完成了發展的4個歷史階段。
建國后,我國繼電保護學科、繼電保護設計、繼電器制造工業和繼電保護技術隊伍從無到有,在大約10年的時間里走過了先進國家半個世紀走過的道路。50年代,我國工程技術人員創造性地吸收、消化、掌握了國外先進的繼電保護設備性能和運行技術[1],建成了一支具有深厚繼電保護理論造詣和豐富運行經驗的繼電保護技術隊伍,對全國繼電保護技術隊伍的建立和成長起了指導作用。阿城繼電器廠引進消化了當時國外先進的繼電器制造技術,建立了我國自己的繼電器制造業。因而在60年代中我國已建成了繼電保護研究、設計、制造、運行和教學的完整體系。這是機電式繼電保護繁榮的時代,為我國繼電保護技術的發展奠定了堅實基礎。
自50年代末,晶體管繼電保護已在開始研究。60年代中到80年代中是晶體管繼電保護蓬勃發展和廣泛采用的時代。其中天津大學與南京電力自動化設備廠合作研究的500kV晶體管方向高頻保護和南京電力自動化研究院研制的晶體管高頻閉鎖距離保護,運行于葛洲壩500 kV線路上[2],結束了500kV線路保護完全依靠從國外進口的時代。
在此期間,從70年代中,基于集成運算放大器的集成電路保護已開始研究。到80年代末集成電路保護已形成完整系列,逐漸取代晶體管保護。到90年代初集成電路保護的研制、生產、應用仍處于主導地位,這是集成電路保護時代。在這方面南京電力自動化研究院研制的集成電路工頻變化量方向高頻保護起了重要作用[3],天津大學與南京電力自動化設備廠合作研制的集成電路相電壓補償式方向高頻保護也在多條220kV和500kV線路上運行。
我國從70年代末即已開始了計算機繼電保護的研究[4],高等院校和科研院所起著先導的作用。華中理工大學、東南大學、華北電力學院、西安交通大學、天津大學、上海交通大學、重慶大學和南京電力自動化研究院都相繼研制了不同原理、不同型式的微機保護裝置。1984年原華北電力學院研制的輸電線路微機保護裝置首先通過鑒定,并在系統中獲得應用[5],揭開了我國繼電保護發展史上新的一頁,為微機保護的推廣開辟了道路。在主設備保護方面,東南大學和華中理工大學研制的發電機失磁保護、發電機保護和發電機?變壓器組保護也相繼于1989、1994年通過鑒定,投入運行。南京電力自動化研究院研制的微機線路保護裝置也于1991年通過鑒定。天津大學與南京電力自動化設備廠合作研制的微機相電壓補償式方向高頻保護,西安交通大學與許昌繼電器廠合作研制的正序故障分量方向高頻保護也相繼于1993、1996年通過鑒定。至此,不同原理、不同機型的微機線路和主設備保護各具特色,為電力系統提供了一批新一代性能優良、功能齊全、工作可靠的繼電保護裝置。隨著微機保護裝置的研究,在微機保護軟件、算法等方面也取得了很多理論成果。可以說從90年代開始我國繼電保護技術已進入了微機保護的時代。
三、電氣工程智能系統結構
電氣工程智能系統(ICAD)的結構模型如圖1所示。
在本系統中把專家系統引入到電氣CAD 中,采用編譯型Turbo PROLOG語言,高級算法語言FORTRAN 77和Auto LISP語言交互編制電氣ICAD系統。這樣,充分地利用了各種語言自身的優點,也方便了程序的編制。在此通過設計用戶菜單,來補充系統提供的能力,并把無功功率補償專家系統嵌入CAD系統中。通過用戶菜單,用戶可以十分方便地選擇自己的工作方式。系統的這種實現方式的特點是:直觀、簡潔且容易接受。可以使用戶在很短時間內掌握操作方法,方便地調用相應的子模塊。設計效率高,降低了設計成本;減輕了設計者的負擔。
四、數據結構的改進
專家系統對設計的數據結構和類型知識的描述較為簡單、不能滿足系統的通用
性和擴展性,故對設計條件和設計對象及設計目標數據結構提出了通用的知識表示方法。電氣設計從宏觀上講是一個正向推理過程,由一些初始數據來驅動推理機,進行規則匹配、解決沖突,然后得到結論。這些初始數據對于繼電保護系統設計來說,就是一次系統的結構、參數及對保護系統的設計要求。對于變壓器等主設備的繼電保護的初步設計來說,所用到的一次系統初始數據參數種類采用關聯組元或關系謂詞予以表達。關聯組元表達形式:(對象名:屬性名=屬性值)它適于描述孤立對象的屬性概念;關系謂詞表示形式:( 主體對象名,客體對象名:謂詞屬性名= 屬性值)在表示事實等知識時,既含有對象實體的屬性,又含有多個對象之間的關系。
圖2 給出了一個變壓器保護系統框架的具體構成,可分為系統級、故障類型保護級、保護方式級、繼電器J 類型級及具體繼電器產品J 型號級。每一級的框架均具有近似相同的結構,并且每個框架都隸屬于一個更高級的框架。下面給出系統中一個電流繼電器框架的具體描述:
框架結構:
框架名稱= C R
/ 電流繼電器
框架編號=56
所屬框架號=46
/ 屬于低壓過流保護方式框架
相數= 1
/ 單相繼電器
型號=DL233/6
/ 調DL233/6繼電器子框架
Iset=
/ 電流整定值
如需計算=ISETO
/如需計算,可調用ISETO過程計算Iset
用戶選擇=Ilist
/如用戶自定,則顯示Ilist列表以供選擇
由上可知,本框架表示的對象實體為CR繼電器,系統編號為56,屬于46號低壓過流保護方式框架。其中”相數=1”是最簡單的屬性槽,其屬性值在設計推理的過程中由規則直接賦值。“Iset=”可以在推理中直接賦值,或在需要計算時調用ISETO程序計算賦值,還可以調出定值列表Ilist有用戶自行選擇賦值。“型號= DL233/6”是在框架槽,它可以引出具體繼電器DL233/6這個下層子框架。框架的如此嵌套關系可以構成對整個保護系統的描述。這種框架系統構成了復雜的語義網絡,其中的子框架能繼承或更改父框架的槽值約定。這樣即可以節省表示的信息以減少數據冗余,又能較容易地保持信息的一致性或無矛盾性。
五、 結語
建國以來,我國電力系統繼電保護技術經歷了4個時代。隨著電力系統的高速發展和計算機技術、通信技術的進步,繼電保護技術面臨著進一步發展的趨勢。國內外繼電保護技術發展的趨勢為:計算機化,網絡化,保護、控制、測量、數據通信一體化和人工智能化,這對繼電保護工作者提出了艱巨的任務,也開辟了活動的廣闊天地。本文介紹了電氣工程智能系統的系統結構以及在繼電保護中的實現,并通過對專家系統數據結構的改進,使其更加具有通用性,實踐證明效果良好。
[參考文獻]
[1] 林堯瑞等. 專家系統原理與實踐.清華大學出版社,1988.
【關鍵詞】繼電保護現狀發展
1繼電保護發展現狀
電力系統的飛速發展對繼電保護不斷提出新的要求,電子技術、計算機技術與通信技術的飛速發展又為繼電保護技術的發展不斷地注入了新的活力,因此,繼電保護技術得天獨厚,在40余年的時間里完成了發展的4個歷史階段。
建國后,我國繼電保護學科、繼電保護設計、繼電器制造工業和繼電保護技術隊伍從無到有,在大約10年的時間里走過了先進國家半個世紀走過的道路。50年代,我國工程技術人員創造性地吸收、消化、掌握了國外先進的繼電保護設備性能和運行技術[1],建成了一支具有深厚繼電保護理論造詣和豐富運行經驗的繼電保護技術隊伍,對全國繼電保護技術隊伍的建立和成長起了指導作用。阿城繼電器廠引進消化了當時國外先進的繼電器制造技術,建立了我國自己的繼電器制造業。因而在60年代中我國已建成了繼電保護研究、設計、制造、運行和教學的完整體系。這是機電式繼電保護繁榮的時代,為我國繼電保護技術的發展奠定了堅實基礎。
自50年代末,晶體管繼電保護已在開始研究。60年代中到80年代中是晶體管繼電保護蓬勃發展和廣泛采用的時代。其中天津大學與南京電力自動化設備廠合作研究的500kV晶體管方向高頻保護和南京電力自動化研究院研制的晶體管高頻閉鎖距離保護,運行于葛洲壩500kV線路上[2],結束了500kV線路保護完全依靠從國外進口的時代。
在此期間,從70年代中,基于集成運算放大器的集成電路保護已開始研究。到80年代末集成電路保護已形成完整系列,逐漸取代晶體管保護。到90年代初集成電路保護的研制、生產、應用仍處于主導地位,這是集成電路保護時代。在這方面南京電力自動化研究院研制的集成電路工頻變化量方向高頻保護起了重要作用[3],天津大學與南京電力自動化設備廠合作研制的集成電路相電壓補償式方向高頻保護也在多條220kV和500kV線路上運行。
我國從70年代末即已開始了計算機繼電保護的研究[4],高等院校和科研院所起著先導的作用。華中理工大學、東南大學、華北電力學院、西安交通大學、天津大學、上海交通大學、重慶大學和南京電力自動化研究院都相繼研制了不同原理、不同型式的微機保護裝置。1984年原華北電力學院研制的輸電線路微機保護裝置首先通過鑒定,并在系統中獲得應用[5],揭開了我國繼電保護發展史上新的一頁,為微機保護的推廣開辟了道路。在主設備保護方面,東南大學和華中理工大學研制的發電機失磁保護、發電機保護和發電機?變壓器組保護也相繼于1989、1994年通過鑒定,投入運行。南京電力自動化研究院研制的微機線路保護裝置也于1991年通過鑒定。天津大學與南京電力自動化設備廠合作研制的微機相電壓補償式方向高頻保護,西安交通大學與許昌繼電器廠合作研制的正序故障分量方向高頻保護也相繼于1993、1996年通過鑒定。至此,不同原理、不同機型的微機線路和主設備保護各具特色,為電力系統提供了一批新一代性能優良、功能齊全、工作可靠的繼電保護裝置。隨著微機保護裝置的研究,在微機保護軟件、算法等方面也取得了很多理論成果。可以說從90年代開始我國繼電保護技術已進入了微機保護的時代。
2繼電保護的未來發展
繼電保護技術未來趨勢是向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。
2.1計算機化
隨著計算機硬件的迅猛發展,微機保護硬件也在不斷發展。原華北電力學院研制的微機線路保護硬件已經歷了3個發展階段:從8位單CPU結構的微機保護問世,不到5年時間就發展到多CPU結構,后又發展到總線不出模塊的大模塊結構,性能大大提高,得到了廣泛應用。華中理工大學研制的微機保護也是從8位CPU,發展到以工控機核心部分為基礎的32位微機保護。
南京電力自動化研究院一開始就研制了16位CPU為基礎的微機線路保護,已得到大面積推廣,目前也在研究32位保護硬件系統。東南大學研制的微機主設備保護的硬件也經過了多次改進和提高。天津大學一開始即研制以16位多CPU為基礎的微機線路保護,1988年即開始研究以32位數字信號處理器(DSP)為基礎的保護、控制、測量一體化微機裝置,目前已與珠海晉電自動化設備公司合作研制成一種功能齊全的32位大模塊,一個模塊就是一個小型計算機。采用32位微機芯片并非只著眼于精度,因為精度受A/D轉換器分辨率的限制,超過16位時在轉換速度和成本方面都是難以接受的;更重要的是32位微機芯片具有很高的集成度,很高的工作頻率和計算速度,很大的尋址空間,豐富的指令系統和較多的輸入輸出口。CPU的寄存器、數據總線、地址總線都是32位的,具有存儲器管理功能、存儲器保護功能和任務轉換功能,并將高速緩存(Cache)和浮點數部件都集成在CPU內。
電力系統對微機保護的要求不斷提高,除了保護的基本功能外,還應具有大容量故障信息和數據的長期存放空間,快速的數據處理功能,強大的通信能力,與其它保護、控制裝置和調度聯網以共享全系統數據、信息和網絡資源的能力,高級語言編程等。這就要求微機保護裝置具有相當于一臺PC機的功能。在計算機保護發展初期,曾設想過用一臺小型計算機作成繼電保護裝置。由于當時小型機體積大、成本高、可靠性差,這個設想是不現實的。現在,同微機保護裝置大小相似的工控機的功能、速度、存儲容量大大超過了當年的小型機,因此,用成套工控機作成繼電保護的時機已經成熟,這將是微機保護的發展方向之一。天津大學已研制成用同微機保護裝置結構完全相同的一種工控機加以改造作成的繼電保護裝置。這種裝置的優點有:(1)具有486PC機的全部功能,能滿足對當前和未來微機保護的各種功能要求。(2)尺寸和結構與目前的微機保護裝置相似,工藝精良、防震、防過熱、防電磁干擾能力強,可運行于非常惡劣的工作環境,成本可接受。(3)采用STD總線或PC總線,硬件模塊化,對于不同的保護可任意選用不同模塊,配置靈活、容易擴展。
繼電保護裝置的微機化、計算機化是不可逆轉的發展趨勢。但對如何更好地滿足電力系統要求,如何進一步提高繼電保護的可靠性,如何取得更大的經濟效益和社會效益,尚須進行具體深入的研究。\
2.2網絡化
計算機網絡作為信息和數據通信工具已成為信息時代的技術支柱,使人類生產和社會生活的面貌發生了根本變化。它深刻影響著各個工業領域,也為各個工業領域提供了強有力的通信手段。到目前為止,除了差動保護和縱聯保護外,所有繼電保護裝置都只能反應保護安裝處的電氣量。繼電保護的作用也只限于切除故障元件,縮小事故影響范圍。這主要是由于缺乏強有力的數據通信手段。國外早已提出過系統保護的概念,這在當時主要指安全自動裝置。因繼電保護的作用不只限于切除故障元件和限制事故影響范圍(這是首要任務),還要保證全系統的安全穩定運行。這就要求每個保護單元都能共享全系統的運行和故障信息的數據,各個保護單元與重合閘裝置在分析這些信息和數據的基礎上協調動作,確保系統的安全穩定運行。顯然,實現這種系統保護的基本條件是將全系統各主要設備的保護裝置用計算機網絡聯接起來,亦即實現微機保護裝置的網絡化。這在當前的技術條件下是完全可能的。
對于一般的非系統保護,實現保護裝置的計算機聯網也有很大的好處。繼電保護裝置能夠得到的系統故障信息愈多,則對故障性質、故障位置的判斷和故障距離的檢測愈準確。對自適應保護原理的研究已經過很長的時間,也取得了一定的成果,但要真正實現保護對系統運行方式和故障狀態的自適應,必須獲得更多的系統運行和故障信息,只有實現保護的計算機網絡化,才能做到這一點。
對于某些保護裝置實現計算機聯網,也能提高保護的可靠性。天津大學1993年針對未來三峽水電站500kV超高壓多回路母線提出了一種分布式母線保護的原理[6],初步研制成功了這種裝置。其原理是將傳統的集中式母線保護分散成若干個(與被保護母線的回路數相同)母線保護單元,分散裝設在各回路保護屏上,各保護單元用計算機網絡聯接起來,每個保護單元只輸入本回路的電流量,將其轉換成數字量后,通過計算機網絡傳送給其它所有回路的保護單元,各保護單元根據本回路的電流量和從計算機網絡上獲得的其它所有回路的電流量,進行母線差動保護的計算,如果計算結果證明是母線內部故障則只跳開本回路斷路器,將故障的母線隔離。在母線區外故障時,各保護單元都計算為外部故障均不動作。這種用計算機網絡實現的分布式母線保護原理,比傳統的集中式母線保護原理有較高的可靠性。因為如果一個保護單元受到干擾或計算錯誤而誤動時,只能錯誤地跳開本回路,不會造成使母線整個被切除的惡性事故,這對于象三峽電站具有超高壓母線的系統樞紐非常重要。
由上述可知,微機保護裝置網絡化可大大提高保護性能和可靠性,這是微機保護發展的必然趨勢。
2.3保護、控制、測量、數據通信一體化
在實現繼電保護的計算機化和網絡化的條件下,保護裝置實際上就是一臺高性能、多功能的計算機,是整個電力系統計算機網絡上的一個智能終端。它可從網上獲取電力系統運行和故障的任何信息和數據,也可將它所獲得的被保護元件的任何信息和數據傳送給網絡控制中心或任一終端。因此,每個微機保護裝置不但可完成繼電保護功能,而且在無故障正常運行情況下還可完成測量、控制、數據通信功能,亦即實現保護、控制、測量、數據通信一體化。
目前,為了測量、保護和控制的需要,室外變電站的所有設備,如變壓器、線路等的二次電壓、電流都必須用控制電纜引到主控室。所敷設的大量控制電纜不但要大量投資,而且使二次回路非常復雜。但是如果將上述的保護、控制、測量、數據通信一體化的計算機裝置,就地安裝在室外變電站的被保護設備旁,將被保護設備的電壓、電流量在此裝置內轉換成數字量后,通過計算機網絡送到主控室,則可免除大量的控制電纜。如果用光纖作為網絡的傳輸介質,還可免除電磁干擾。現在光電流互感器(OTA)和光電壓互感器(OTV)已在研究試驗階段,將來必然在電力系統中得到應用。在采用OTA和OTV的情況下,保護裝置應放在距OTA和OTV最近的地方,亦即應放在被保護設備附近。OTA和OTV的光信號輸入到此一體化裝置中并轉換成電信號后,一方面用作保護的計算判斷;另一方面作為測量量,通過網絡送到主控室。從主控室通過網絡可將對被保護設備的操作控制命令送到此一體化裝置,由此一體化裝置執行斷路器的操作。1992年天津大學提出了保護、控制、測量、通信一體化問題,并研制了以TMS320C25數字信號處理器(DSP)為基礎的一個保護、控制、測量、數據通信一體化裝置。
2.4智能化
近年來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,在繼電保護領域應用的研究也已開始[7]。神經網絡是一種非線性映射的方法,很多難以列出方程式或難以求解的復雜的非線性問題,應用神經網絡方法則可迎刃而解。例如在輸電線兩側系統電勢角度擺開情況下發生經過渡電阻的短路就是一非線性問題,距離保護很難正確作出故障位置的判別,從而造成誤動或拒動;如果用神經網絡方法,經過大量故障樣本的訓練,只要樣本集中充分考慮了各種情況,則在發生任何故障時都可正確判別。其它如遺傳算法、進化規劃等也都有其獨特的求解復雜問題的能力。將這些人工智能方法適當結合可使求解速度更快。天津大學從1996年起進行神經網絡式繼電保護的研究,已取得初步成果[8]。可以預見,人工智能技術在繼電保護領域必會得到應用,以解決用常規方法難以解決的問題。
3結束語
建國以來,我國電力系統繼電保護技術經歷了4個時代。隨著電力系統的高速發展和計算機技術、通信技術的進步,繼電保護技術面臨著進一步發展的趨勢。國內外繼電保護技術發展的趨勢為:計算機化,網絡化,保護、控制、測量、數據通信一體化和人工智能化,這對繼電保護工作者提出了艱巨的任務,也開辟了活動的廣闊天地。
作者單位:天津市電力學會(天津300072)
參考文獻
1王梅義.高壓電網繼電保護運行技術.北京:電力工業出版社,1981
2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)
3沈國榮.工頻變化量方向繼電器原理的研究.電力系統自動化,1983(1)
4葛耀中.數字計算機在繼電保護中的應用.繼電器,1978(3)
5楊奇遜.微型機繼電保護基礎.北京:水利電力出版社,1988
6HeJiali,Luoshanshan,WangGang,etal.ImplementationofaDigitalDistributedBusProtection.IEEETransactionsonPowerDelivery,1997,12(4)