首頁 > 文章中心 > 壓力容器焊接工藝論文

          壓力容器焊接工藝論文

          前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇壓力容器焊接工藝論文范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。

          壓力容器焊接工藝論文

          壓力容器焊接工藝論文范文第1篇

          論文摘要:壓力容器設計中最重要的部分之一便是材料的選擇,它直接關系到壓力容器的質量和安全性,但由于設備制造過程中采購困難等因素的影響,材料代用現象普遍發生,常見的代用問題有:以優代劣、以厚代薄及其他問題,這些問題直接關系到容器的質量和安全以及投資建設方的經濟和管理問題,值得我們重視。

          如何進行正確的選材是壓力容器設計和創造中的第一步,也是直觀重要的一步。在壓力容器的設計和制造過程中,一旦材料選取不合適,會對容器的安全使用留下重大隱患。所以,在壓力容器選材上,要根據容器的具體使用條件,如設計的壓力和溫度、操作特征、介質特點等,來選取擁有合適力學、焊接和耐腐蝕性能等物理性能的材料。除此之外,選取材料時還要充分考慮其具體加工工藝和經濟性等其他因素。

          1 材料代用的具體規定

          在設備的設計和制造過程中,常常會出現材料采購困難或者出于經濟上的考慮,材料代用的現象經常出現在壓力容器的設計過程中。《固定式壓力容器安全技術監督規程(TSG R0004-2009)》以及《鋼制壓力容器(GB150-1998)》對材料代用做了相關規定。一般來講,主要要求如下:壓力容器的承壓部件在代用材料的選擇上,應和被代用材料有著相同或者相似的外形質量、化學成分、尺寸公差、性能指標、檢驗項目和檢驗率等。材料代用最基本的原則是:要絕對保證,在技術要求上,代用材料不得低于被代用材料,個別在檢測率或性能項目上要求不嚴格的代用材料,可以采取檢驗、測試的方式來選擇合適的代用材料。材料代用的手續要求為:(1)容器承壓部件的代用要嚴格進行,須經由代用單位技術部門的批準并上報代用材料的復檢報告或質量證明,由主管負責人核準批復;(2)必須在獲得原設計單位的允許并拿到證明文件后,才可以在壓力容器制造時進行材料代用;(3)壓力容器的設計圖、施工圖以及出廠時的質量證明書中要細致標注代用材料的規格部位、材質和規格。

          2 以優代劣

          壓力容器所用的全部金屬材料要具有優良的性能,包括材料的力學性能、耐腐蝕性、耐高溫性和制作工藝等。每一種材料的性能都是固定不變的,從性能比較的角度出發,常常會出現材料間的“優”和“劣”的問題。但每種壓力容器對對材料性能的要求在不同情況下也是不一樣的,所以,材料代用中的“優”與“劣”判斷從實際出發,具體問題具體分析。下面,筆者基于自身工作經驗,主要探討了幾種典型的“以優代劣”問題。

          2.1 壓力容器制作中,在強度、力學特征等機械性能方面,其常用到的低合金鋼盡管明顯優于碳素鋼,但其冷加工性能與可焊性都比不過碳素鋼。一般來說,強度級別高的,其冷加工性能與可焊性就較差,二者負相關。所以在進行這方面的代用時,應相應調整焊接工藝,在熱處理時也可能會有相應變化,應給予充分重視。

          2.2 材料代用時進行細致、周全的考慮,否則壓力容器實際使用中可能會出現各種安全隱患。比如處于濕硫化氫環境下及存在應力腐蝕開裂風險的設備中,容器對應力腐蝕開裂地敏感性隨容器使用的鋼材的強度級別的提高而增大,二者正相關。此時若將20R和Q235和20R系列的鋼材用16MnR等低合金鋼待用就極易產生問題,因此,此類“以優代劣”行徑在原則是行不通的,應當被禁止。鎮靜鋼在許多性能方面上,鎮靜鋼都比沸騰鋼要更占優勢,但在搪玻璃容器制造時,鎮靜鋼的搪瓷效果反而不如沸騰鋼好。

          2.3 一般來說,不銹鋼的耐腐蝕性較出色,但在含有氯離子的環境下,其耐腐蝕性卻不如低合金鋼和碳素鋼。

          2.4 和普通不銹鋼相比,超低碳不銹鋼雖然具有價格優勢和良好的耐腐蝕性,但前者的高溫熱強性卻更為出色。一般情況下,為了提高耐腐蝕性,需降低含量,而為了提高高溫性,則要提高炭的含量。故而,此種情況下的 “以優代劣”,要尤其精確設計設備溫度,如有必要,應當重新計算。

          2.5 原則上,膨脹節、爆破片、撓性管板及這類零件不能進行以優代劣,特殊情況下必須代用時應以代用的材料為重新進行精密計算,根據結果,適當調整零件厚度,以防止這類零件及其相鄰部位出現故障或者失效。

          2.6 對熱換器管板而言,鍛件的總體性能比板材要好,所以通常情況下采用鍛件,但當管板厚度小于6cm時也可以用板材代替鍛件,但此時要注意,即使鍛件和板材的厚度、材質及設計溫度都相同,但兩者的許應用力卻不相同,前者的許應用力稍低于后者。故如需鍛件代用板材,應重新核準管板厚度。

          對鋼材來說,其化學成份上的微小差異都可能對其性能造成重大影響,所以要對待任何類型壓力容器鋼材的“以優代劣”問題都要予以充分重視,以免導致產品和原設計不符。

          3 以厚代薄

          “以厚代薄”常常使從平面應力狀殼體的受力態轉變為平面應變狀態,這對容器受力狀態來說,是有百害而無一利的,通常情況下,厚壁容器比薄壁容器更容易產生三向拉應力,進而產生平面應變脆性斷裂。

          3.1 對原設計中封頭和筒體間等厚焊接的容器,若對容器殼體的個別部件進以厚代薄,很容易增加殼體的幾何不連續情況,從而使封頭和筒體間的連接部位受到的局部應力增加,此時,對于有應力腐蝕傾向的容器來說,會造成很大的損害。可能會導致疲勞裂紋,嚴重的可能造成疲勞斷裂。

          3.2 在厚板替代薄板時,常常導致連接結構發生相應改變,例如,筒體與加厚的封頭連接時,通常需要對封頭進行削邊處理。對以管道為主要筒體構成的設備,若增加筒壁厚度,在封頭與筒體的連接部位也須對筒體側實施內削邊處理。在厚度增加較大時,往往也關系到焊接工藝的變化。

          3.3 容器殼體整體層面上的“以厚代薄”,雖然并不會造成筒體連接處和封頭的局部應力增加,但不了避免地,仍會導致一下不良影響。1)厚度增加后,原來的殼體設計中的探傷方式和焊接工藝也要進行相應的改變,增加難度;2)殼體厚度的增加必然使容器的重量加大,當容器重量增加過大時,必然會對容器的基礎和支座產生不利影響;3)對殼體同時具有傳熱作用的容器,殼體厚度的增加肯定會影響其傳熱效果。

          3.4 鋼板的許應用力和其厚度緊密相連,《鋼制壓力容器(GB150-1998)》指出,鋼材的許應用力隨著其板厚的增大而減小,二者負相關。例如20℃-150℃環境下,16MnR板厚由16mm變為18mm時,其許應用力則從170MPa降為167MPa,150℃時,20R的板厚由16mm變為18mm時,其許應用力則從135MPa降為125MPa。由此可知,以厚代薄很可能導致強度不夠,故而,對處于臨界狀態的以厚代薄,必須對驗算其強度。

          3.5 因為原件厚度與其剛性是成正比的,厚度越大,剛性越強,所以原則上不允許對撓性薄管板、波紋管和膨脹節等元件實行以厚代薄,以防止減弱補償變形的效果。

          3.6 由于換熱器的特殊性,對熱換器的主要元件進行以厚代薄很容易破壞原來的平衡力系,原則上不可以厚代薄,特殊情況下,必須代用時,需要重新設計計算。

          綜上所述,以厚代薄的利弊問題是很復雜的,在進行代用時,要由相關設計單位對代用的可行性和影響進行綜合考慮后,方可決定其是否可行。對可采取以厚代薄類型的容器,應對其焊接工藝、支座和等進行相應的調整,以盡可能的消除不利影響。

          4 其他注意事項

          進行材料代用時,應根據實際用材情況對焊接工藝進行適當的調整,一般調整原則為:用高級材料替代低級材料時,實驗和驗收仍可采用低級材料的標準,不用提高標準;不同材料的耐高溫性、韌度等性能不同時,進行最低水壓實驗時,其相應的溫度也可能發生改變,此時,要嚴格按GB150的相關規定執行;當板厚增加超過GB150所規定的冷卷厚度時,一定要對筒體進行消除應力的熱處理;鋼板的厚度達到一定水平時,還需要進行超聲探傷,必要時,提高水試驗的壓力。

          結語

          以鋼為材料主體進行設計和制作的壓力容器,在材料的機械性能要求上,在考兩次材料強度的同時,也應考慮其韌性,在韌性滿足的條件下,則應盡可能提高其強度。從這個角度上來說,在壓力容器材料選擇上要正確界定“優”和“劣”,不要單純的從材料的厚度和強度來考慮,而要進行綜合辨析和考慮。所以,也可以說,壓力容器制造中的材料待用并不單單是技術問題,更包含容器的安全性、投資方的經濟效益、制造商的成本等經濟和管理問題在內的復雜問題。所以,不論是哪種材料代用,其本質上均是變更壓力容器的設計方案,應給予相當的重視。

          參考文獻

          [1]朱海鷹,姚潤來,辛忠仁,辛忠智. 鋼制壓力容器材料選擇的幾個問題[J].中國化工裝備, 2006,(03):66-68.

          [2]金元文,濮軍.壓力容器制造中材料代用的常見問題分析[J].貴州化工,2007,(04):88-89.

          [3]陳冬勤.淺析壓力容器制造的材料代用問題[J].科技風,2009,(04):42-43.

          [4]王興衍,龔敬文.壓力容器制造的質量控制[J].甘肅科技縱橫,2009,(02):102.

          壓力容器焊接工藝論文范文第2篇

          關鍵詞 工程機械;焊接;核心工藝

          中圖分類號TG40 文獻標識碼A 文章編號 1674-6708(2013)84-0067-01

          0 引言

          工程機械大型焊接件的焊接過程直接影響著焊接質量,也影響著焊接夾具裝夾系統的合理布局,還影響著大型焊接件的焊接變形預測及控制。因此對大型焊接件進行現場觀察,分析零件的結構特點、工藝,分析焊接車間的布局特點等,對工程機械大型焊接件的核心工藝進行初步規劃具有非常重要的意義。

          1 工程機械的發展現狀

          工程機械經歷了50年到60年的發展歷程,到20世紀90年代中末期機械焊接技術就已經達到了非常高的水平。經歷了十幾年的發展的機械焊接工業,在跨國公司品牌的不斷沖擊之下,創造出了一條寬闊自由的發展道路,并慢慢的在國內壯大起來,已經控制了國內85%以上的工程機械大型焊接市場份額。國內焊接市場的營業額在最近幾年吞并了我國整個工程機械行業總營業額的大半個江山,因此,機械焊接行業地位的重要性,以及大型焊接件的核心工藝推出的出色產品,在國際市場上開始萌芽,其發展勢頭并不亞于其他行業。

          2 工程機械焊接構件特點及常規焊接工藝

          2.1 工程機械焊接結構件的特點

          工程機械結構件主要包含薄板件,板厚一般為2mm~4mm;中板件板厚約為6mm~20mm;厚板件板厚約為20mm及以上。大多數情況下主要利用板材進行拼接,采用箱形結構,附件(機座鑄鋼件)焊接在上面,其結構復雜,焊縫要求精度高。在工程機械大型焊接結構件中,角焊縫的情況比較多,通常只檢查焊縫的焊接形態和質量,但對于主要的受力結構件需要檢查表面裂紋和焊縫缺陷,采用磁粉探傷或者超聲波探傷。

          2.2 常規焊接工藝

          常規的焊接工藝主要包括以下兩個方面。1)焊件準備:即下料準備,采用剪板機和數控切割機進行切割。薄板件平常用等離子切割,中厚板采取火焰切割。校平的時候,薄板件通常采用壓力機校準;中厚板采用專用的板材矯平機校準,板材比較完整則可省去校準工序。折彎的時候采用專用折彎機,批量生產時通常采用數控折彎機,以獲得較高的工作效率;2)組對點焊:指點焊的過程中,確定各焊件位置的時候,利用人工畫劃的方法使各個焊件按其對應的位置關系組成一個整體,這種方式簡單可靠,缺點是劃線工作量繁瑣,生產效率不高,組對誤差偏高,產品生產差。工件數量較大時應采用機器人焊接,這種焊接方式操作簡單易行,組對精度高,產品優良,當前有許多廠家采用機器人焊接模式。

          3工程機械大型焊接件的核心工藝發展趨勢

          3.1 焊接變位機將普遍應用

          隨著市場的擴大以及市場競爭日趨激烈,焊縫的質量被作為一個重要的評判標準。因此,為了在保證高標準的焊接質量的前提之下,又必須兼顧整體生產效率、操作安全程度和自動焊接等要求,一般情況,車間內焊接某部件時,要采用變位機來獲得更高的焊接質量,實現一次裝夾完成全部焊接。而像立焊、橫焊、仰焊等難以保證焊接質量的錯誤操作則應該摒棄。由此,變位機焊接在焊接行業內必定得到廣泛應用。

          3.2 焊接機器人及自動焊接機的使用將逐步增加

          采取機器人焊接的模式即代替焊工焊接,這樣不僅可以節省焊接工人的人數,降低工人勞動強度,而且還能保證焊縫質量的穩定可靠。機器人焊接,客觀的說焊接機器人即機械手,因其自身不能獨立工作,需配備一些設備,像變位機、專用夾具等,組成焊接機器人工作站。隨著我國經濟的不斷發展,焊接機器人代替操作人員是必然走向。

          3.3 焊前工序設備水平將逐步提高

          采取機器人自動焊接的企業一定都知道,不僅操作人員的技術水平對焊縫質量有影響,下料、成型對焊縫質量的影響也非常大。將焊前工序設備水平與實際操作要求相一致,是實現焊接過程的自動化進程的關鍵,進而降低機械加工強度;提高生產效率;同時,還可以使產品質量穩定可靠、提高同行業中產品的競爭力。廠家需要花費更多的資金,并且在產品改型的過程中還需要對其重新設計調整是影響拼點工裝的主要因素。目前,只有資金雄厚的廠家使用拼點工裝,但都獲得很大的收益。從已經使用機器人焊接的廠家我們可以看出,其使用的配套拼點工裝相對較多,焊接工序設備的質量大幅度提高。

          4 結論

          我國是一個正處于工業化進程中的制造業大國,意味著工業化達到一定水平后,工業裝備水平的高低將制約著工業經濟的增長的快慢。焊接技術的迅速發展,以及新的焊接設備、工藝方法不斷涌現,為我國工程機械大型焊接工藝發展做出應有的貢獻。與此同時,大型焊接件的工藝、設備布局及物流、焊接變形預測與控制,對提高企業核心競爭力、提高核心零部件的制造能力和技術水平具有十分重要的意義。

          參考文獻

          [1]王壽福.焊接技術在鐵路機車車輛工業中的應用[J].焊接技術,2004.

          [2]王玉玲.機械可靠性維修性優化設計方法及其在工程機械中的應用[D].濟南:山東大學,2007.

          [3]龍聽,汪建華.溫差法在焊接殘余應力和變形控制中的應用[J].壓力容器,2007.

          壓力容器焊接工藝論文范文第3篇

          關鍵詞:雙絲焊;造船;高速列車;管道工程.

          【分類號】:TF762.3

          前言

          隨著中國經濟的快速發展,中國的鋼產量和用量均達到世界第一位,這極大地推動了焊接技術的發展,目前中國鋼結構的焊接工作量已達到世界焊接強國的水平[1]。隨著海洋裝備、航空探測器、大飛機、高速列車等產業的發展,對焊接技術和焊接質量的要求越來越高,因此提高焊接過程的生產效率,探尋和發展優質、高效、節能的焊接方法已成為滿足實際生產需要的重要任務[2-4]。隨著先進制造業的發展,傳統單絲焊接方法的生產效率已趨于極限,無法滿足現代化工業技術發展的步伐。同單絲焊接技術相比,雙絲焊具有焊接速度高、熔敷效率高、焊縫質量好等優點,能夠極大地提高焊接生產效率,因此受到越來越多的關注[5-7]。

          1. 雙絲焊的分類

          根據焊接特點和保護方式不同,雙絲焊主要包括雙絲埋弧焊和雙絲氣體保護焊兩種[8-10]。雙絲埋弧焊因其高效、節能、優質的特點,在國內外造船、橋梁、壓力容器和管道領域都得到了廣泛的應用。但是,雙絲埋弧焊只適于平焊長的直焊縫和圓形縱、環焊縫,而且焊縫熔深大,其應用有一定的局限性。雙絲氣體保護焊具有焊接高速快、熔敷率高的特點,不僅可以焊接薄板工件,也可以焊接厚板結構,在輸氣管道、壓力窗口、鋼管、橋梁、船舶等領域具有較好的應用前景。

          根據焊接電路配置和焊絲的裝配不同,雙絲焊分為串列雙絲焊、并列雙絲焊、串聯雙絲焊、雙絲三弧焊和雙絲預熱填絲焊等[11, 12]。本文主要介紹串列雙絲焊、并列雙絲焊、串聯雙絲焊。

          1.1 串列雙絲焊

          串列雙絲焊中每根焊絲由一個電源控制,是目前最受關注的雙絲焊技術。氣體保護串聯雙絲焊一般稱為TANDEM雙絲焊。根據焊絲的相對位置不同,串列雙絲焊分為分離電弧法和共熔池法。在雙絲埋弧焊中,分離電弧法應用較廣。分離電弧法實際上是由兩套傳統的單絲埋弧焊系統組裝而成,設備簡單,通用性強。通常情況下,一根焊絲直流反接,另一根焊絲使用交流電源,從而即能夠獲得較大的熔深,也能夠保證焊縫成形美觀,目前該方法已在造船、壓力容器和管道焊接領域廣泛應用。

          共熔池法同分離電弧焊最大的區別在于焊槍部分,它同樣包括兩臺焊機和兩臺送絲機,但只有一把焊槍。共熔池法多用于氣保焊,兩根焊絲分別使用單獨的導電嘴,共用一個氣體噴嘴。焊接時,兩根焊絲分別引弧,在雙電弧中熔化形成一個熔池。由于雙電弧距離較近,相互干擾,一般使用脈沖電源。

          1.2 并列雙絲焊

          并列雙絲焊的兩根焊絲共用一個電源和一個導電嘴,兩根焊絲平行排列,一般垂直于母材,焊絲的直徑和成分可以更換和調整,但兩根焊絲的送進速度相同。并列雙絲焊實質上是利用兩個較細的焊絲來代替一根較粗的焊絲,由于存在兩個電弧,母材的熱影響區變寬,但熱輸入變小,焊縫金屬的過熱傾向減小,而且焊接速度較單絲焊有明顯提高。氣體保護并列雙絲焊一般稱為TWIN-ARC雙絲焊,兩根焊絲共用一個導電嘴和氣體噴嘴。

          1.3 串聯雙絲焊

          串聯雙絲焊的母材不通電,兩焊絲通過導電嘴分別接電源的正負兩極,兩焊絲串聯,電弧在兩焊絲之間產生。焊接時即可用直流電源也可用交流電源,兩焊絲之間的夾角一般為30-45°。這種焊接工藝熔敷速度是傳統單絲焊的1.5-2倍,由于母材不接電源,母材的熱輸入少,熔深淺,熔敷層金屬的稀釋率一般小于10%。

          雙絲間接電弧氣體保護焊是一種比較新的串聯雙絲焊技術,該方法采用直流電源,兩套送絲機構分別控制兩根焊絲的送進,電弧可在距工件不同的位置引弧和燃燒,兩極性斑點分別在兩焊絲上,利用弧柱熱量和熔滴攜帶的熱量熔化母材形成焊縫。

          2. 雙絲焊的發展及現狀

          雙絲焊的研究基本都是從埋弧焊開始,雙絲自動埋弧焊最早的應用出現在20世紀50年代,該技術的出現使焊接效率發生了根本性的提升[13]。雙絲自動埋弧焊包括單電源雙絲和串列雙弧兩種,單電源雙絲焊熔透能力較差,一般僅適用于窄間隙焊接,而串列雙弧中雙絲由兩個電源單獨控制,具有熔深大、熔敷速度高、焊縫金屬稀釋率接近單絲焊的特點,目前已在實際生產中得到廣泛應用。

          氣體保護雙絲焊的研究最早出現在1955 年。同雙絲埋弧焊一樣,雙絲氣保焊也可以減小焊接變形,提高焊接質量和生產效率,同時節約焊接材料[14]。國外科研機構對于雙絲氣保焊的研究較早,目前已完全掌握相關設備的成熟生產工藝。例如,加拿大焊接研究所研制了脈沖雙焊絲GMAW 焊接設備,用于窄間隙的高強鋼焊接;日本的NKK 船廠采用了雙高速旋轉電弧的焊接工藝,用于角焊縫的焊接;奧地利弗尼斯公司成功開發了單槍雙絲MIG 焊技術,焊槍尺寸小巧,適應于焊件的任何位置焊接。為了適應薄板高速焊和厚板高熔敷率焊接,2001 年在德國埃森展上由奧地利Fronius 公司和德國CLOOS 公司分別展出了雙絲 MIG 焊設備,該類設備是將兩根焊絲按一定角度放在同一個焊槍噴嘴內,兩根焊線分別由各自獨立的電源供電,焊接過程穩定,焊接效率較高,達到 3~5m/min,該類設備已在車輛制造、造船、汽車等方面得到了廣泛的應用[15-17]。除上述公司外,德國的BENZEL公司,美國的Miller、Lincoln公司目前均可以生產成套的TANDEM或TWIN-ARC雙絲焊設備。

          我國在雙絲焊方面的研究也比較早,在80年代便可以制造出雙絲氣體保護焊設備。但后來由于焊接人才缺乏和科研經費短缺,我國雙絲焊技術的研究一直遠遠落后于國外,目前我國的雙絲焊設備基本依賴進口,僅德國的CLOOS公司的TANDEM雙絲焊接系統在國內便有數百套。近年來,國家加大了先進焊接技術領域的資助,我國在雙絲焊領域的研究迅速發展,上海交通大學、西南交通大學、北京工業大學、哈爾濱工業大學、山東大學等科研院校均開展了該方面的研究工作,部分機構已經具備研制雙絲焊設備的能力[18-20]。但是,由于研究基礎薄弱,相關理論知識缺乏,我國雙絲焊設備的整體水平同國外同類產品還有較大的差距。

          3. 雙絲焊的應用

          3.1 雙絲焊在造船領域的應用

          2010年,中國造船業的三大指標即造船完工量、新承接訂單量、手持訂單量均超越老牌造船強國韓國和日本,成為世界第一造船大國。雖然由于經濟危機和產業結構的問題,近兩年我國的造船業發展進程有所回落,但仍然保持在世界三大造船大國之列。焊接技術是船舶制造工業的關鍵技術,船舶的焊接技術水平直接影響著我國造船業的國際競爭力和發展前景。

          采用雙絲埋弧焊工藝焊接船用高強鋼DH36,焊接質量完全滿足中國船級社《材料與焊接規范》的技術要求,焊接熔敷率較單絲埋弧焊有明顯提高,焊接道次減少,20-30mm厚度的鋼板能夠實現雙面單道焊,焊接效率大大提高[21]。對于60mm厚度的DH36 鋼采用交流方波雙絲埋弧焊方法,通過優化焊接工藝,焊接接頭的低溫斷裂韌性(0 °C)明顯改善。采用小電流、低速焊的工藝,焊縫的斷裂韌性裂紋尖端張開位移(CTOD)值比常規工藝提高約85%,熱影響區提高近4倍;采用大電流、高速焊的工藝,焊縫的斷裂韌性 CTOD 值比常規工藝提高近3倍,熱影響區提高近2倍[22]。

          高強度船體用EH36是一種經過細晶處理的鎮靜鋼,其焊接熱影響區組織與性能對焊接熱輸入較敏感,熱影響區淬硬傾向大,氫致裂紋敏感性較大。相比較傳統單絲CO2氣保焊,采用雙絲CO2氣保焊焊接EH36,焊接接頭的屈服強度、延伸率和低溫韌性(-40 °C)均顯著改善。另外,在單根焊絲具有相同電流和電壓的前提下,獲得相同的焊縫寬度時,雙絲焊的焊接速度比單絲焊提高1倍,生產效率大大提高[23]。

          3.2 雙絲焊在高速列車領域的應用

          我國的高速列車技術經過近20年的發展,通過消化吸收和自主創新相結合的發展道路,逐漸突破高速列車的關鍵技術問題,實現了高速列車的自主制造。2010年CRH380AL新一代高速列車創造了486.1 km/h的世界高速鐵路最高運營速度,標志著我國高速列車技術已躋身世界高速列車技術先進行列。高速列車的高速化主要取決于車身的輕量化材料和車體結構,因此高速列車承載結構輕量化的研究至關重要。

          鋁合金因其比強度高、耐蝕性好、成型工藝好等優點,在高速列車車體中得到廣泛應用。但是,鋁合金活性高,鋁與氧的親和力在,焊縫中容易形成氧化鋁夾渣。鋁合金導熱系數和膨脹系數也較大,焊接時需要高的熱輸入,容易產生焊接應力和變形甚至裂紋。目前鋁合金的有效焊接方法主要為鎢極氬弧焊和熔化極氬弧焊[24]。鎢極氬弧焊適合焊接的板厚范圍為1-20mm,熔化極氬弧焊采用高熔敷率焊接(大電流、粗焊絲,適用于厚板)時,熱輸入過大,焊縫成形較差,若采用高速焊接(高電流密度、細焊絲,適用于薄板)時,對送絲速度的要求較高。

          雙絲焊接技術可以解決高速列車鋁合金焊接時存在的問題,不僅可以獲得優質的焊接接頭,還可以提高焊接效率。以CRH3型動車組車體用6005A-T6鋁合金為例,采用奧地利IGM Robot RTI 330-S雙絲焊接系統,通過優化工藝參數,焊接接頭組織比單絲焊更為致密和均勻,抗拉強度和延伸率均有所提高,焊接速度顯著提高,目前該技術工藝已實際應用于CRH3高速動車組的生產中[25]。采用雙絲MIG焊焊接6082-T6鋁合金時,由于雙絲焊熱輸入較小,焊接接頭晶粒較小,熱影響區較窄,硬度及抗拉強度相比單絲焊接接頭略有提高,但雙絲焊焊接速度大大提高[26]。另外,雙絲焊在2219、7A52等鋁合金的焊接也被學者廣泛研究,通過調整工藝參數,雙絲焊接技術均能夠獲得良好的焊接接頭,不僅力學性能優于單絲焊接接頭,耐蝕性也有所提高[27-30]。

          3.3 雙絲焊在管道焊接領域的應用

          管道工程主要用于輸送各種介質,作為一項重要的基礎設施,管道工程已廣泛地存在于石油、化工、電力、建筑和市政等行業。隨著我國經濟的持續快速發展,東部沿海地區的能源消耗越來越多,石油、天然氣等戰略能源物質的輸送變得尤為重要,逐漸得到國家的重視。近年來,隨著“西氣東輸”等大型管道工程的開展,鋼管材料的使用量大幅增加。同其他焊接結構不同,管道即要承受一定的壓力,還要完全保證傳輸物質不能泄露,因此鋼管的焊接質量要求較高,焊接接頭不僅具有良好的力學性能,還要具有較好的致密性和耐蝕性,以保證管道工程的安全運行。

          目前管道工程主要采用X系列管線鋼,代表鋼種有X60、X65、X70和 X80。管線鋼的焊接主要為環焊縫或螺旋焊縫,而且管徑較大,管壁較厚,因此主要采用埋弧焊焊接。同單絲埋弧焊相比,雙絲埋弧焊減少了咬邊焊接缺陷,焊接速度提高30-40%,滿足了鋼管的高速焊接。雙絲埋弧焊工藝特別適用于厚管的焊接,22mm厚板可單面焊雙面成型,甚至可以焊接300mm厚的焊件。埋弧焊管工藝一般采用串列雙絲焊技術,采用直流+交流的形式,前絲采用直流電,后絲采用交流電,即可以獲得足夠的熔深,以能夠得到滿意的焊縫[31,32]。大管徑X65級鋼管對接環焊縫焊接時,采用U形坡口多層焊工藝,在較小的熱輸入下,可以保證焊接接頭具有優良的拉伸性能和斷裂韌性,焊縫效率大大提高,完全能夠應用于陸地和海底油氣管道[33]。

          4. 雙絲焊的前景及展望

          “十二五”期間,“發展高效焊接”、“提高焊接機械化、自動化水平”是焊接技術發展的方向和目標。雙絲焊以高速、高效、節能、優質等優點越來越被焊接界人士認同,在實際生產中的應用也越來越多。我國每年造船用鋼量可達上千萬噸,油氣管道用鋼在200萬噸以上,若全面采用雙絲焊工藝,其能源節約將非常可觀,而且生產效率大大提高,其發展前景非常廣闊。此外,中俄、中緬、中國-中亞油氣管道工程以及中國西氣東輸三線工程的建設為雙絲焊接技術的發展和應用提供了空間的機遇。隨著雙絲焊技術的不斷成熟和完善,雙絲焊工藝也同焊接機器人相整合,焊接效率和自動化程度進一步提高。同時,三絲甚至多絲焊工藝也在逐漸出現,新的電弧組合焊接工藝方法也被學者廣泛研究。相信在不久的將來,焊接產業將進入全新的發展時期,先進的焊接技術和工藝將不斷涌現,從而推動機械加工行業整體水平的提升。

          參考文獻

          [1] 林尚揚,關橋. 我國制造業焊接生產現狀與發展戰略研究 [J]. 機械工人:熱加工,2004,5:10-15.

          [2] 劉兵,彭超群,王日初,王小鋒,李婷婷. 大飛機用鋁合金的研究現狀及展望 [J]. 中國有色金屬學報,2010,20(9):1705-1715.

          [3] 張衛華,王伯銘. 中國高速列車的創新發展 [J]. 機車電傳動,2010,1:9-12.

          [4] 崔維成,劉峰,胡震,朱敏,郭威,劉誠剛. 蛟龍號載人潛水器的7000米級海上試驗 [J]. 船舶力學,2012,16(10):1131-13.

          [5] Tim Morehead. Automatic multiwire GMAW multiplies productivity [J]. Welding Journal, 2003, 6: 40-43.

          [6] Did-ling L A, Michael S, Ladwing B. High-quality and economically viable coating by means of tandem gas-shielded metal-arc welding [J]. Welding and Cutting, 2002, 5: 18-23.

          [7] 曹梅青,鄒增大,張順善,曲仕堯. 雙絲電弧焊研究現狀及進展 [J]. 山東科技大學學報(自然科學版),2008,27(4):88-92.

          [8] 伍小龍,徐衛東,汪渾. 厚壁容器的雙絲窄間隙埋弧焊 [J]. 壓力容器,2010,20(3):27-31.

          [9] 張紅兵,黃石生,周漪清,蔣曉明. 雙電弧共熔池氣保焊技術特點與發展現狀 [J]. 電焊機,34(11):25-28.

          [10] 范成磊,孫清潔,趙博,楊春利,張良峰. 雙絲窄間隙熔化極氣體保護焊的焊接穩定性 [J]. 機械工程學報,2009,45(7):265-269.

          [11] 魏占靜. 先進的TANDEM高速、高效的MIG/MAG雙絲焊技術 [J]. 機械工人:熱加工,2002,5:22-37.

          [12] 單文超,曹凈淑,王志偉. 雙絲電弧焊研究進展 [J]. 油氣田地面工程,2007,26(2):45.

          [13] Knight D E. Multiple-electrode welding by “union melt” process [J]. Welding Journal, 1954, 4: 303-312.

          [14] Volodin V S. Automatic welding with two wires [J]. Welding Journal, 1955, 3: 103-111.

          [15] Lassaline E. Norrow groove twin wire GMAW of high-strength steel [J]. Welding Journal, 1989, 68(9): 53-57.

          [16] 韓國明. 雙絲熔化極氣體保護焊 [J]. 現代焊接,2006,4:45-47.

          [17] 王振民,黃石生,薛家祥. 軟開關雙絲脈沖熔化極活性氣體保護焊逆變電源[J]. 華南理工大學學報(自然科學版),2006,34(7):31-34.

          [18] 孫遠芳. 雙焊絲懸臂送絲CO2氣體保護焊新工藝 [J]. 焊接技術,1992,6:6-7.

          [19] 李恒,梁秀娟,李幸呈. 高效雙絲MIG/MAG脈沖焊系統及工藝 [J]. 焊接,2005,10:24-27.

          [20] 王元良,屈金山,胡久富. 高效節能細絲自動焊設備的研究 [J]. 電焊機,2002,32(3):9-12.

          [21] 劉海清,徐雁飛,呂德華,胡建華,汪亮. 船用高強鋼雙絲埋弧焊工藝研究[J]. 焊接技術,2011,4:33-39.

          [22] 吳世品,王東坡,鄧彩艷,王穎. 焊縫CTOD試驗中的Pop-in效應及產生原因 [J]. 焊接學報,2012,33(4):105-108.

          [23] 呂艷麗,船用E級鋼三絲GMAW對接焊工藝研究 [M]. 上海交通大學碩士論文,2012,70-72.

          [24] 呂艷麗,華學明,葉定劍,吳毅雄. 多絲氣體保護焊電弧干擾研究現狀 [J]. 熱加工工藝,2011,40(5):155-158.

          [25] 張海滄,尹維,黃飛,阮野,劉喜明. 高速列車車體鋁合金雙絲焊接頭組織與性能 [J]. 長春工業大學學報(自然科學版),2010,31(2):197-201.

          [26] 趙世航. 6082-T6鋁合金雙絲MIG焊接頭組織和性能的研究 [M]. 吉林大學碩士學位論文,2010,17:23.

          [27] 孟慶國,方洪淵,徐文立,姬書得. 2219鋁合金雙絲焊熱影響區組織及力學性能 [J]. 焊接學報,2006,27(3):9-12.

          [28] 張傳臣,陳芙蓉,高云喜. 7A52鋁合金單雙絲焊工藝對比分析 [J]. 焊接學報,2008,29(9):67-70.

          [29] 解瑞軍,陳芙蓉,張傳臣,高云喜. 7A52鋁合金雙絲焊工藝及焊縫耐腐蝕性 [J]. 焊接學報,2008,29(12):57-60.

          [30] 何靜,陳芙蓉,解瑞軍,高云喜. 7A52超硬鋁合金焊接參數與人工時效參數的優化 [J]. 熱加工工藝,2009,38(3):91-92.

          [31] 董軍,周林. 螺旋埋弧焊管內焊雙絲焊工藝參數的優化 [J]. 焊管,2005,28(4):60-61.

          壓力容器焊接工藝論文范文第4篇

          近十年,隨著社會生產力的不斷提高和社會經濟的不斷發展,社會用電需求越來越大,促使了電力行業迅猛發展,推動了電網建設的不斷升級。輸變電電力工程向高電壓、大容量、多回路發展,相應地,工程結構所承受的外部荷載也越來越大,鋼材使用量越來越多,工程建設的費用越來越高,促使工程選用的鋼材強度級別向更高層次發展。高強鋼其強度高,使用高強鋼可發揮出承載力大的優點,特別是結構中強度控制起主要作用的構件,很多情況下受壓構件也有較大的優勢。一些試驗工程的統計分析表明,與普通的Q235、Q345鋼相比,使用Q420、Q460鋼可以明顯減少工程鋼材用量,減輕工程結構重量,降低成本,經濟效益和社會效益較顯著。

          為改善鋼的性能,Q460鋼在冶煉時一般會比Q345鋼加入更多的一些合金元素,提高了鋼的強度,但有可能因此而降低Q460鋼的焊接性,GB/T 1591C2008《低合金高強度結構鋼》規定的碳當量最高值達到0.46%(熱軋、控軋)、0.53%(正火、正火軋制、正火加回火)、0.47%(TMCP、TMCP+回火)。

          低合金高強度鋼是在碳素鋼的基礎上加入總質量百分數不超過5%的合金元素,屈服強度超過275MPa,并具有不同用途結構所要求的良好的強度、塑性、韌性、焊接性、成型性、耐蝕性、耐熱性、耐低溫性、耐磨性或其它特殊性能,通常以板、帶、型、管等鋼材形式供應,用戶不需經過重新熱加工、熱處理而直接使用的結構鋼種可稱之為低合金高強度鋼。國外這類鋼多年來已逐漸形成一個統一名稱――高強度低合金鋼.

          由于低合金高強度鋼不但具有較高的強度和良好的綜合性能,而且還有較好的經濟性,因此,低合金高強度鋼在多個行業的應用發展非常迅速,包括建筑、橋梁、鐵道、船舶、輸送管線、鍋爐、壓力容器、汽車、機械、核能等領域,并且其應用范圍將越來越廣。鋼材的焊接性在一定程度上限制了Q460高強鋼在電力工程中的推廣應用,某些工程也只是試驗性地采用焊接連接方式,都盡可能地少用或不用焊接,因此,高強鋼的焊接性問題引起了電力行業內眾多工程技術人員的關注。大家共同關注的問題主要有兩方面:1、目前的冶金技術生產的Q460鋼材力學性能離散性如何?是否能達到100%的合格?2、目前的Q460鋼的強化形式是怎樣?是否會降低其焊接性(包括使用焊接性和工藝焊接性)?為了在生產中采用科學正確的焊接工藝,保證焊接接頭各項性能指標,最終保證應用Q460鋼的工程質量安全,非常有必要開展Q460高強鋼的焊接性研究,為Q460鋼焊接工藝評定施焊參數的制定提供充足、科學的依據,這是本論文主要的研究背景和初衷。對Q460鋼進行系統充分的研究,如果驗證此鋼材的焊接性良好并適合應用于電力工程,可以推動更多新建或改造的電力工程使用Q460鋼,將產生更大的經濟效益和社會效益。

          因此,本論文不僅能促進我公司掌握更多的Q460高強鋼焊接性數據,積累更多高強鋼焊接經驗,完善焊接工藝規程,并且為公司拓展市場起著積極作用。而且,本論文對我國電力行業的發展有著積極影響,具有較大的學術價值和實際應用意義,正因為工程中有著這樣的需求,Q460鋼的焊接性研究也將是國內有關單位研究的熱門課題之一,信未來會有更多的研究成果產生。

          我國國家標準GB/T 13304.2C2008《鋼分類》第2部分規定了按主要質量等級和主要性能或按使用特性進行分類的分類方法。GB/T 1591C2008《低合金高強度結構鋼》規定的鋼材如按照主要特性分類可統一歸類為可焊接低合金高強度結構鋼,如按照主要質量等級可分為優質低合金鋼和特殊質量低合金鋼兩類。GB/T 1591C2008《低合金高強度結構鋼》中各牌號及各質量等級鋼按GB/T 13304.2C2008《鋼分類》第2部分進行分類,Q460各質量等級均屬于特殊質量低合金鋼。YB/T 4163C2007《鐵塔用熱軋角鋼》規定了5類適用于鐵塔用的熱軋角鋼強度級別,其中低合金高強度鋼包括Q345T、Q420T和Q460T,為Q460牌號的角鋼在輸變電鋼結構上推廣應用奠定了基礎,并從標準指引上縮短了我國與國外先進國家的差距。

          日本電力事業發展較早并且較先進,為滿足高電壓等級、大容量、大型化輸電線路的建設要求,日本較早應用高強度級別的鋼材,日本鐵塔協會1995年頒布的《輸電用鋼管鐵塔制作基準》對鋼材的種類、材質、力學性能. 日本鐵塔規范中規定的最高強度的鋼材是應用于鋼板構件的SM570鋼,其屈服強度級別達到460MPa,是可焊性良好的焊接結構用鋼;另外,對于鋼管、角鋼和法蘭用鋼其最高的屈服強度級別達到440MPa(STKT590、SH590S、SH590P、SFT590)。另外,俄羅斯對鐵塔用鋼的最高強度級別達到578MPa。日本、歐美等國使用高強鋼的工程經驗為我國工程標準的發展和高強鋼在工程上探索使用、推廣應用提供了參考。

          踏入2000年,由于高強鋼的生產工藝日漸成熟,性價比較高,越來越多的電力工程開始應用高強鋼。唐鋼公司在2003年10月立項對Q420角鋼的生產技術進行攻關,于2004年7月成功開發生產出Q420角鋼并應用于當時我國準備建設的最高電壓等級的750kV官亭―蘭州東超高壓輸電線路工程鐵塔。此次工程的試點應用,為我國其它輸電線路工程推廣使用Q420高強鋼提供了更多的數據參考。此后,Q420鋼在很多200kV、500kV、750kV、±800kV的輸電線路工程中得到應用,甚至在我國的1000kV特高壓交流試驗示范工程(晉東南――南陽――荊門線路工程)也采用了Q420高強鋼。截至2010年底,在220kV及以上電壓等級的輸電線路工程中Q420高強鋼的應用總量已近60萬噸。GB/T 9787C88《熱軋等邊角鋼》列入的角鋼型號為2#~20#(邊寬為20~200mm),國內鋼材生產企業很少生產型號超過20#的角鋼,以往國內輸變電工程應用的角鋼規格幾乎都在L200×24或者以下。隨著特高壓及其它同塔雙/多回輸電線路的建設需求越來越多,輸電鐵塔承載能力要大大提高,因此,對高強度大規格(超過20#)的角鋼需求也越來越大。