前言:本站為你精心整理了地震勘探論文:地震勘查技術(shù)運用研究范文,希望能為你的創(chuàng)作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。
本文作者:付兆輝秦偉軍作者單位:中國石化石油勘探開發(fā)研究院
1地震采集技術(shù)
1)散射成像數(shù)值模擬技術(shù)
地震成像技術(shù)一直是基于有效波的反射能量,即反射波法地震勘探。在斷層十分發(fā)育、地層破碎、高陡直立界面等復雜地質(zhì)現(xiàn)象情況下,地表接收不到有效的地震反射,對地下復雜地震體無法成像,在這種情況下反射波法是不適應的[6]。因此需要利用新的成像方法———散射波成像[7-11]。在沒能接收到反射波的情況下,仍有波的能量傳回到地面,依然觀測到波動的存在,這種波動是由入射波與非均勻介質(zhì)相互作用而產(chǎn)生的散射波,它含有地下介質(zhì)不均勻性的信息。不同尺度和不同組成的非均勻性會引起不同形式的地震波散射,可以從這些散射現(xiàn)象來反推這些非均勻性的分布和性質(zhì),即基于散射波來成像。在地層破碎、高陡、巖脈等復雜地質(zhì)條件下,可利用散射波場的波動方程正演模擬技術(shù)進行三觀測系統(tǒng)的論證和設計。在泌陽凹陷南部陡坡帶高精度三維中,在波動方程正演基礎(chǔ)上進行基于散射成像理論的數(shù)值模擬(反演)來描述邊界斷裂帶的波場傳播規(guī)律,進行道間距、炮檢距、覆蓋次數(shù)等采集參數(shù)的論證,實現(xiàn)了用散射波成像技術(shù)解決復雜的地質(zhì)問題(圖2)。
2)高精度激發(fā)技術(shù)
復雜地表區(qū)的地震激發(fā)主要任務是減少干擾波能量、增大有效波能量,形成具有反映地下地質(zhì)體能力的有效波波場(如:較寬的頻帶、較高的主頻和信噪比)。泌陽凹陷表層有基巖出露區(qū)、河流和農(nóng)田,勘探難度較大,采用了巖石出露區(qū)鉆井技術(shù)和河灘河床區(qū)鉆井技術(shù)。(1)巖石出露區(qū)鉆井技術(shù)巖石出露區(qū)或者薄層風化覆蓋區(qū),若使用高能炸藥在一定深度下使震源藥柱處在風化層之下的高速巖石中激發(fā),能夠獲得較好的激發(fā)效果,但是在有風化層覆蓋的激發(fā)點,使用的幾種鉆機往往是能打堅硬巖石的打不了風化層,能打風化層的又打不了堅硬巖石,給打井造成困難。通過對QPY-30型鉆機的技術(shù)改進,使其打穿風化層后,再打入堅硬巖石2m以上,解決了這一困難,保證了好的激發(fā)效果。(2)河灘河床區(qū)鉆井技術(shù)河流區(qū)表層為疏松的粗砂夾雜礫石層,在高速層頂界面以下激發(fā),能量強、能有效增加下傳能量、減弱激發(fā)產(chǎn)生的各類干擾。但河灘區(qū)鉆機到位及鉆井成孔困難,激發(fā)藥柱很難下到高速層頂界面以下,若采用淺井組合激發(fā)效果差。我們開展了鉆井成孔工藝研究,通過對固沙劑與泥漿粉進行不同配方的試驗,最終選用混合型固沙劑作為鉆井泥漿,提高了固井性能。并采用新型材料的專用鉆頭進行鉆探,保證了激發(fā)藥柱下到了高速層頂界面以下3~5m;在礫石的區(qū)域使用配備套筒的沖擊鉆機,通過“沖擊套筒—取出套筒中礫石—下藥”等環(huán)節(jié),使激發(fā)藥柱下到了高速層頂界面以下3~5m。鉆井新技術(shù)的應用,使單炮記錄品質(zhì)有了保證。
2地震資料處理技術(shù)
通過攻關(guān)形成了高陡構(gòu)造地區(qū)三維地震疊前深度偏移處理技術(shù)的方法,取得了較好的效果。
1)靜校正方法深化研究
泌陽南部陡坡帶近地表突出的特點在于,山不高(高差不到200m),但南北速度橫向變化大,高達2000m/s之多,這給替換速度的選取帶來很大的困難;斷陷區(qū)斷層與水平層接觸關(guān)系混亂,該部位資料信噪比很低;斷層發(fā)育,傾角達45°,斷面波發(fā)育,成像混亂,此處的剩余靜校正有很大的時變性;工區(qū)北部沉積環(huán)境相對平穩(wěn),用常規(guī)的折射靜校正即能達到勘探的要求,關(guān)鍵是與山地的對接形成了很大的差別[12]。針對這些特點,首先采用初至波層析反演方法反演近地表速度,精確地描繪近地表速度的縱、橫向變化規(guī)律;然后依據(jù)初至波層析反演結(jié)果,用波動方程延拓基準面校正消除由于近地表高速造成的非地表一致性靜校正誤差;最后進行多次剩余靜校正迭代消除剩余靜校正的時變誤差,實現(xiàn)復雜地表條件下準確的靜校正處理。波場延拓處理方法是按地震波在近地表的真實傳播路徑使波場準確歸位,該方法充分考慮了波在近地表非垂直傳播的實際情況,既可實現(xiàn)曲射線的變時差校正,提高剖面質(zhì)量,又可使校正后的波場滿足所在位置的波動特征,為疊前波動方程偏移奠定良好的基礎(chǔ)(圖3)。波動方程延拓的步驟包括了數(shù)據(jù)由地表下延至中間基準面,然后再上延至最終基準面的過程。然而,這個過程并不僅限于兩個基準面,可以包括更多的基準面,這取決于近地表的復雜程度。當然,基準面過多會增加計算成本和時間,但可以提高計算精度。圖4為L30線采用不同靜校正方法的L30線疊加剖面,比較而言采用波動方程延拓基準面靜校正方法效果較好,南部大斷層附近信噪比明顯得到提高。
2)疊前偏移成像處理技術(shù)
針對凹陷南部陡坡帶邊界大斷裂的存在,基巖速度較高,而凹陷內(nèi)部斷裂下降盤的沉積巖速度相對較低,存在速度的橫向變化的特點,采用了在取得較好的疊前時間偏移成像及較準確的均方根速度的基礎(chǔ)上,進行層速度模型構(gòu)建及克希霍夫疊前深度偏移處理方法,收到較好的效果。(1)Kirchhoff疊前深度偏移Kirchhoff疊前深度偏移被認為是一種高效實用的疊前深度偏移方法,積分法具有高偏移角度、無頻散、占用資源少和實現(xiàn)效率高的特點。它能適應變化的觀測系統(tǒng)和起伏的地表,優(yōu)化的射線追蹤法和改進的有限差分法能夠在速度場變化的情況下快速準確地計算繞射波旅行時,從而使積分法能夠適應復雜的構(gòu)造現(xiàn)象。近年來,解決真振幅偏移問題就是偏移地震數(shù)據(jù)得到真正的振幅和相位信息,從而為巖性解釋服務。由于積分法具有許多優(yōu)點,因此研究克希霍夫型保幅疊前深度偏移具有很高的理論價值和實用價值。(2)速度-深度模型建立方法克希霍夫積分法疊前深度偏移的關(guān)鍵是速度模型的建立。在泌陽凹陷南部陡坡帶疊前深度偏移處理中,應用了速度-深度模型建立方法。為了獲取高精度的速度-深度模型,采取了以下處理步驟:①借助疊前時間偏移的準確均方根速度建立深度域初始速度模型,得到長波長速度場;②利用疊前深度偏移的速度對模型細化。③利用網(wǎng)格層析成像技術(shù)進一步微調(diào)短波長速度場,得到高精度速度模型。傳統(tǒng)深度域速度模型的建立,一般基于沿層速度分析,即首先在時間偏移數(shù)據(jù)體上解釋層位,然后通過各種不同的方法求取目標層的層速度,最終得到大套層的速度模型。利用垂向速度分析得到時間速度對,通過樣條插值和反演,產(chǎn)生速度模型。這種建立模型的方法充分考慮了構(gòu)造信息,如構(gòu)造傾角和方位角;最終得到的模型是有限差分網(wǎng)格化模型,是一個連續(xù)介質(zhì)模型而不是大套地層模型[13-16]。經(jīng)過以上的速度分析后,可能還有一些局部速度誤差需要微調(diào)。利用網(wǎng)格層析成像技術(shù),即根據(jù)剩余速度,全局修正速度模型。層析成像修正速度后,一些短波長的速度誤差得以調(diào)整。(3)陡坡帶高精度三維處理效果高精度三維處理后的剖面(圖5)邊界主控斷裂面反射清晰,歸位準確,信噪比、分辨率整體上有明顯提高,尤其是深層系資料有了明顯改觀,波組特征明顯,為南部陡坡帶的深層勘探提供了可靠的地震資料。
3地震解釋技術(shù)
1)三維可視化解釋技術(shù)
三維地震數(shù)據(jù)可視化就是將每個數(shù)據(jù)樣點轉(zhuǎn)換成一個體元,即帶有近似的面元空間和采樣間隔的三維像素。每一個體元都有一個與三維數(shù)據(jù)體相對應的值,這樣每一個地震道都被轉(zhuǎn)換成一個體元柱狀體。每個數(shù)據(jù)體都可通過調(diào)整顏色和透明度等參數(shù),突出顯示目標地質(zhì)體,并在同一窗口一次完成鎖定層位、體元追蹤等可視化解釋工作。三維可視化地震解釋技術(shù)通過對地震數(shù)據(jù)應用不同透明度在三維空間地下的地震反射率做直接評估,立體可視化假定地下界面的反射率是地下界面的三維模型,實際上,它是三維空間中的構(gòu)造、地層及振幅綜合特性的反映,無論做三維的區(qū)域分析,還是特定目標體評價,都可以通過調(diào)整“透明度”來實現(xiàn)。因此對三維地震資料沿層振幅可視化,可以確定斷層的空間展布及斷層的組合形式,使斷層的解釋更合理(圖6)。
2)利用地震屬性預測儲層
三維地震資料包含了豐富的地震信息,這些地震信息在不同程度上反映了地質(zhì)儲層的各種物性特征[17]。利用地震數(shù)據(jù)通過不同的計算手段提取各種不同地震信息,并通過單項地震信息或多項地震信息的綜合分析,從不同角度對地震資料進行細致的解釋和推斷,以揭示有利儲層的空間展布、地層巖性變化以及含油氣性,同時據(jù)此還可推斷由斷層或裂縫引起的原始地震剖面上不易被發(fā)現(xiàn)的地質(zhì)異常現(xiàn)象及油氣分布情況[18-22]。根據(jù)泌陽凹陷南部陡坡帶扇三角洲儲層沉積特點,結(jié)合地震相反射特征和溝扇對應地質(zhì)理論,應用三維可視化解釋技術(shù)確定儲層在三維空間的展布范圍、地震屬性參數(shù)判識砂礫巖體的發(fā)育規(guī)模[23]。
勘探效果
在泌陽凹陷陡坡帶中段栗園地區(qū),通過三維地震資料高精度采集,CDP面元20m×20m,利用地震測井和VSP測井資料開展高精度三維資料處理與解釋,資料質(zhì)量得到明顯改善,落實了邊界斷裂帶構(gòu)造特征,為精細落實構(gòu)造、巖性圈閉奠定了基礎(chǔ)。利用疊前深度偏移剖面(圖7)和時間切片(圖8)解釋,認為栗園地區(qū)構(gòu)造背景為由NE-SW向的邊界斷裂向深凹陷傾沒的鼻狀構(gòu)造,構(gòu)造長約3km,寬約3km,面積約9km2。構(gòu)造發(fā)育史分析發(fā)現(xiàn):該構(gòu)造是由南部邊界斷裂在廖莊組末期發(fā)生反轉(zhuǎn)而形成的,構(gòu)造形成時間較晚,且僅在淺層發(fā)育。由于邊界斷裂長期的斷陷活動對深層油氣藏的破壞,造成深層油氣沿斷層向上運移,在淺層圈閉中形成一定規(guī)模的淺層次生油氣藏。儲層預測及沉積體系研究表明,該區(qū)發(fā)育一中小型砂礫巖體,呈NW向下傾展布。砂體中淺層系呈舌狀體展布,深層系呈扇型體展布。綜合分析認為該區(qū)砂體與構(gòu)造具有良好配置,是油氣聚集的有利場所,2008年在該鼻狀構(gòu)造鉆探B304、B315等井,相繼鉆遇大套油層,新增探明石油地質(zhì)儲量800多萬噸,取得了良好的勘探效果。
結(jié)論
(1)東部第三系斷陷盆地邊界大斷裂控制了盆地的形成與展布,但地震速度橫向變化大,造成時間域偏移不能實現(xiàn)準確的空間歸位,直接影響邊界斷層的成像精度,增加了勘探難度。(2)從散射波的波動方程正演著手,分析大斷面地震波散射場的物理機制和特點,結(jié)合基于疊前偏移處理的需要,進行觀測系統(tǒng)論證,能夠解決陡坡帶邊界斷層的成像精度問題,明顯提高地震資料品質(zhì)和儲層預測精度。(3)陡坡帶高精度地震勘探技術(shù)包括:采集上運用模型約束正演技術(shù)優(yōu)選采集參數(shù)、高覆蓋寬方位角排列觀測、解決山前激發(fā)能量的技術(shù)方法;處理上應用基于精細速度建模的疊前深度偏移成像處理方法;解釋上通過可視化構(gòu)造成圖,結(jié)合地震相分析、層拉平水平切片分析、屬性分析等方法,預測新的砂礫巖體分布區(qū)和層位。