前言:本站為你精心整理了高等數(shù)學(xué)教學(xué)融入數(shù)學(xué)建模思想范文,希望能為你的創(chuàng)作提供參考價(jià)值,我們的客服老師可以幫助你提供個(gè)性化的參考范文,歡迎咨詢。
【摘要】學(xué)習(xí)高等數(shù)學(xué)的目的在于應(yīng)用數(shù)學(xué)思想方法解決實(shí)際問題,本文通過實(shí)例表明將數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中,可以提高學(xué)生應(yīng)用數(shù)學(xué)思想、知識、方法解決實(shí)際問題的能力。
【關(guān)鍵詞】高等數(shù)學(xué);數(shù)學(xué)建模;教學(xué);應(yīng)用
IntegrationofMathematicsModelingThoughtintheHigherMathematicsTeaching
ZHANGMing1,HUWen-yi2,WANGXia1
(1.DepartmentofBasicsofComputerScience,ChengduMedicalCollege,Chengdu610083,China;2.ChengduUniversityofTechnology,Chengdu610059,China)
Abstract:Thepurposeofstudyinghighermathematicsistosolvepracticalproblemswiththemathematicsmethod.Itwillimprovethestudent''''sthought,knowledgeandtheabilitytosolvepracticalproblemsbyintegratingthemathematicalmodelinginhighermathematicsteaching.
Keywords:highermathematics;mathematicalModeling;teaching;application
1引言
數(shù)學(xué)教學(xué)貫穿了小學(xué)、中學(xué)、大學(xué)等諸階段的學(xué)習(xí)過程,培養(yǎng)了學(xué)生以高度抽象的方式來學(xué)習(xí)、理解、應(yīng)用數(shù)學(xué)及相關(guān)學(xué)科的能力[1]。從基本的概念和定義出發(fā),簡練地、合乎邏輯地推演出結(jié)論的教學(xué)過程,是學(xué)生逐漸形成縝密思維方式的過程。但不可否認(rèn)的是,在醫(yī)用高等數(shù)學(xué)的教學(xué)實(shí)踐中,卻因?yàn)槟承┰蛑率共糠謱W(xué)生是為了“學(xué)數(shù)學(xué)”而學(xué)數(shù)學(xué),導(dǎo)致興趣索然,對數(shù)學(xué)望而生畏;或者雖然對常規(guī)的數(shù)學(xué)題目“見題就會(huì),一做就對”,但是對發(fā)生在身邊的實(shí)際問題,卻無法引進(jìn)數(shù)學(xué)建模思想、思路以及基本方法,建立正確的數(shù)學(xué)模型。因此為了適應(yīng)科學(xué)技術(shù)發(fā)展的需要和培養(yǎng)高質(zhì)量、高層次的應(yīng)用性人才[1],怎樣將數(shù)學(xué)建模思想貫穿于醫(yī)用高等數(shù)學(xué)的整個(gè)教學(xué)過程中,以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識和能力已經(jīng)成為數(shù)學(xué)教學(xué)的一個(gè)重要方面。
2對數(shù)學(xué)建模在培養(yǎng)學(xué)生能力方面的認(rèn)識
數(shù)學(xué)建模是一種微小的科研活動(dòng),它對學(xué)生今后的學(xué)習(xí)和工作無疑會(huì)有深遠(yuǎn)的影響,同時(shí)它對學(xué)生的能力也提出了更高的要求[2]。數(shù)學(xué)建模思想的普及,既能提高學(xué)生應(yīng)用數(shù)學(xué)的能力,培養(yǎng)學(xué)生的創(chuàng)造性思維和合作意識,也能促進(jìn)高校課程建設(shè)和教學(xué)改革,激發(fā)學(xué)生的創(chuàng)造欲和創(chuàng)新精神。數(shù)學(xué)建模教學(xué)著眼于培養(yǎng)大學(xué)生具有如下能力:
2.1培養(yǎng)“表達(dá)”的能力,即用數(shù)學(xué)語言表達(dá)出通過一定抽象和簡化后的實(shí)際問題,以形成數(shù)學(xué)模型(即數(shù)學(xué)建模的過程)。然后應(yīng)用數(shù)學(xué)的方法進(jìn)行推演或計(jì)算得到結(jié)果,并用較通俗的語言表達(dá)出結(jié)果。
2.2培養(yǎng)對已知的數(shù)學(xué)方法和思想進(jìn)行綜合應(yīng)用的能力,形成各種知識的靈活運(yùn)用與創(chuàng)造性的“鏈接”。
2.3培養(yǎng)對實(shí)際問題的聯(lián)想與歸類能力。因?yàn)閷τ诓簧偻耆煌膶?shí)際問題,在一定的簡化與抽象后,具有相同或相似的數(shù)學(xué)模型,這正是數(shù)學(xué)應(yīng)用廣泛性的表現(xiàn)。
2.4逐漸發(fā)展形成洞察力,也就是說一眼抓住(或部分抓住)要點(diǎn)的能力。
3有關(guān)數(shù)學(xué)建模思想融入醫(yī)學(xué)生高等數(shù)學(xué)教學(xué)的幾個(gè)事例3.1在關(guān)于導(dǎo)數(shù)定義的教學(xué)中融入數(shù)學(xué)建模思想
在講導(dǎo)數(shù)的概念時(shí),給出引例:求變速直線運(yùn)動(dòng)的瞬時(shí)速度[3,4],在求解過程中融入建模思想,與學(xué)生一起體會(huì)模型的建立過程及解決問題的思想方法。通過師生共同分析討論,有如下模型建立過程:
3.1.1建立時(shí)刻t與位移s之間的函數(shù)關(guān)系:s=s(t)。
3.1.2平均速度近似代替瞬時(shí)速度。根據(jù)已有知識,僅能解決勻速運(yùn)動(dòng)瞬時(shí)速度的問題,但可以考慮用某段時(shí)間中的平均速度來近似代替這段時(shí)間中某時(shí)刻的瞬時(shí)速度。對于勻速運(yùn)動(dòng),平均速度υ是一常數(shù),且為任意時(shí)刻的速度,于是問題轉(zhuǎn)化為:考慮變速直線運(yùn)動(dòng)中瞬時(shí)速度和平均速度之間的關(guān)系。我們先得到平均速度。當(dāng)時(shí)間由t0變到t0+Δt時(shí),路程由s0=s(t0)變化到s0+Δs=s(t0+Δt),路程的增量為:Δs=s(t0+Δt)-s(t0)。質(zhì)點(diǎn)M在時(shí)間段Δt內(nèi),平均速度為:
υ=Δs/Δt=s(t0+Δt)-s(t0)/Δt(1)
當(dāng)Δt變化時(shí),平均速度也隨之變化。
3.1.3引入極限思想,建立模型。質(zhì)點(diǎn)M作變速運(yùn)動(dòng),由式(1)可知,當(dāng)|Δt|較小時(shí),平均速度υ可近似看作質(zhì)點(diǎn)在時(shí)刻t0的“瞬時(shí)速度”。顯然,當(dāng)|Δt|愈小,其近似程度愈好,引入極限的思想來表示|Δt|愈小,即:Δt→0。當(dāng)Δt→0時(shí),若趨于確定值(即極限存在),該值就是質(zhì)點(diǎn)M在時(shí)刻t0的瞬時(shí)速度υ,于是得出如下數(shù)學(xué)模型:
υ=limΔt→0υ=limΔt→0Δs/Δt=limΔt→0s(t0+Δt)-s(t0)/Δt
要求解這個(gè)模型,對于簡單的函數(shù)還比較容易計(jì)算,而對于復(fù)雜的函數(shù),極限值很難求出。但觀察到,當(dāng)拋開其實(shí)際意義僅從數(shù)學(xué)結(jié)構(gòu)上看,這個(gè)數(shù)學(xué)模型實(shí)際上表示函數(shù)的增量與自變量增量比值、在自變量增量趨近于零時(shí)的極限值,我們把這種形式的極限定義為函數(shù)的導(dǎo)數(shù)。有了導(dǎo)數(shù)的定義,再結(jié)合導(dǎo)數(shù)的運(yùn)算法則和相關(guān)的求導(dǎo)法則,前面的這個(gè)模型就從求復(fù)雜函數(shù)的極限轉(zhuǎn)化為單純求導(dǎo)數(shù)的問題,從而很容易求解。
3.2在定積分定義及其應(yīng)用教學(xué)中融入數(shù)學(xué)建模思想對于理解與掌握定積分定義及其在幾何、物理、醫(yī)學(xué)和經(jīng)濟(jì)學(xué)等方面的應(yīng)用,關(guān)鍵在于對“微元法”的講解。而要掌握這個(gè)數(shù)學(xué)模型,就一定要理解“以不變代變”的思想。以單位時(shí)間內(nèi)流過血管截面的血流量為例,我們來具體看看這個(gè)模型的建立與解決實(shí)際問題的整個(gè)思想與過程。
假設(shè)有一段長為l、半徑為R的血管,一端血壓為P1,另一端血壓為P2(P1>P2)。已知血管截面上距離血管中心為γ處的血液流速為
V(r)=P1-P2/4ηl(R2-r2)
式中η為血液粘滯系數(shù),求在單位時(shí)間內(nèi)流過該截面的血流量[3,4](如圖1(a))。
圖1
Fig.1
要解決這個(gè)問題,我們采用數(shù)學(xué)模型:微元法。
因?yàn)檠菏怯姓承缘模?dāng)血液在血管內(nèi)流動(dòng)時(shí),在血管壁處受到摩擦阻力,故血管中心流速比管壁附近流速大。為此,將血管截面分成許多圓環(huán)來討論。
建立如圖1(b)坐標(biāo)系,取血管半徑γ為積分變量,γ∈[0,R]于是有如下建模過程:
①分割:在其上取一個(gè)小區(qū)間[r,r+dr],則對應(yīng)一個(gè)小圓環(huán)。
②以“不變代變”(近似):由于dr很小,環(huán)面上各點(diǎn)的流速變化不大,可近似看作不變,所以可用半徑為r處圓周上流速V(r)來近似代替。此圓環(huán)的面積也可以近似看作以圓環(huán)周長2πr為長,dr為寬的矩形面積2πrdr,則該圓環(huán)內(nèi)的血流量可近似為:ΔQ≈V(r)2πrdr,則血流量微元為:dQ=V(r)2πrdr
③求定積分:單位時(shí)間內(nèi)流過該截面的血流量為定積分:Q=R0V(r)2πrdr。
以上實(shí)例,體現(xiàn)了微元法先分割,再近似,然后求和,最后取極限的建模過程,并成功把所求量表示成了定積分的形式,最終可以應(yīng)用高等數(shù)學(xué)的知識求出所求量的建模思想。
4結(jié)語
高等數(shù)學(xué)課的中心內(nèi)容并不是建立數(shù)學(xué)模型,我們只是通過數(shù)學(xué)建模強(qiáng)化學(xué)生的數(shù)學(xué)理論知識的應(yīng)用意識,激發(fā)學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性和主動(dòng)性。所以在授課時(shí)應(yīng)從簡潔、直觀、結(jié)合實(shí)際入手,達(dá)到既有助于理解教學(xué)內(nèi)容,又可以通過對實(shí)際問題的抽象、歸納、思考,用所學(xué)的數(shù)學(xué)知識給予解決。所選的模型,最好盡可能結(jié)合醫(yī)學(xué)實(shí)際問題,且具一定的趣味性,從而使學(xué)生體會(huì)到數(shù)學(xué)來源于生活實(shí)際,又應(yīng)用于生活實(shí)際之中,以激發(fā)學(xué)生學(xué)好數(shù)學(xué)的決心,提高他們應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力[5]。
總之,高等數(shù)學(xué)教學(xué)的目的是提高學(xué)生的數(shù)學(xué)素質(zhì),為進(jìn)一步學(xué)習(xí)其專業(yè)課打下良好的數(shù)學(xué)基礎(chǔ)。教學(xué)中融入數(shù)學(xué)建模思想,可使學(xué)生的想象力、洞察力和創(chuàng)造力得到培養(yǎng)和提高的同時(shí),也提高學(xué)生應(yīng)用數(shù)學(xué)思想、知識、方法解決實(shí)際問題的能力。
【參考文獻(xiàn)】
[1]洪永成,李曉彬.搞好數(shù)學(xué)建模教學(xué)提高學(xué)生素質(zhì)[J].上海金融學(xué)院學(xué)報(bào),2004,3:(總63)6.
[2]姜啟源.數(shù)學(xué)模型[M].北京:高等教育出版社,1993,6.
[3]梅挺,鄧麗洪.高等數(shù)學(xué)[M].北京:中國水利水電出版社,2007,8.
[4]梅挺,賈其鋒,張明,等.高等數(shù)學(xué)學(xué)習(xí)指導(dǎo)[M].北京:中國水利水電出版社,2007,8.
[5]蔡文榮.數(shù)學(xué)建模與應(yīng)用型人才培養(yǎng)[J].閩江學(xué)院學(xué)報(bào)(自然科學(xué)版),27(2),2006,4.
高等教育 高等教育期刊 高等技術(shù)教育 高等教育導(dǎo)論 高等教育研究 高等特殊教育 高等教育護(hù)理學(xué) 高等教育概論 高等教育管理學(xué) 高等素質(zhì)教育 紀(jì)律教育問題 新時(shí)代教育價(jià)值觀