首頁 > 文章中心 > 正文

          財務管理體系探究

          前言:本站為你精心整理了財務管理體系探究范文,希望能為你的創作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。

          財務管理體系探究

          1財務管理決策支持系統的研究現狀

          決策支持系統經過二十多年的發展,形成了如圖l所示公認的體系結構。它把模型并入信息系統軟件中,依靠管理信息系統和運籌學這兩個基礎逐步發展起來。它為解決非結構化決策問題提供了相應的有用信息,給各級管理決策人員的工作帶來了便利。從圖1可以看出決策支持系統體系結構可劃分為三級,即語言系統(LS)級、問題處理系統(PPS)級和知識系統fKS)級。其中問題處理系統級包括推理機系統(RS)、模型庫管理系統(MBMS)、知識庫管理系統(KBMS)及數據庫管理系統(DBMS)。知識系統級包括模型庫(MB)、知識庫(KB)及數據庫(DBo九十年代中期,興起了三個輔助決策技術:數據倉庫(DW)、聯機分析處理(0LAP)和數據挖掘(DM)。聯機分析處理是以客戶,服務器的方式完成多維數據分析。數據倉庫是根據決策主題的需要匯集大量的數據庫,通過綜合和分析得到輔助決策的信息。數據挖掘顧名思義,是為了獲得有用的數據,在大量的數據庫中進行篩選。人工智能技術建立一個智能的DSS人機界面,可進行圖、文、聲、像、形等多模式交互,人機交互此時變得更為自然和諧,人們能沉浸其中,進行合作式、目標向導式的交互方法。從目前情況來看,財務決策支持系統的研究還處于初級發展階段,財務數據的保密性、特殊性決定了財務決策不能全部公開化、透明化,但隨著中央及國務院相關部門財務預決算數據的公開,財務決策系統及其支持系統和過程也將隨之公開,這就要求決策者充分利用財務知識和決策支持系統的知識“聰明”決策、合理決策、科學決策、規范決策。

          2財務管理神經網絡智能決策支持系統總體研究框架

          2.1神經網絡運行機制神經網絡的著眼點是采納生物體中神經細胞網絡中某些可利用的部分,來彌補計算機的不足之處,而不是單單用物理的器件去完整地復制。第一,神經網絡中的鏈接的結構和鏈接權都可以通過學習而得到,具有十分強大的學習功能;第二,神經網絡所記憶的信息是一種分布式的儲存方式,大多儲存在神經元之間的權中;第三,神經網絡部分的或局部的神經元被破壞后,仍可以繼續進行其他活動,不影響全局的活動,因此說,神經網絡的這種特性被稱作容錯性;第四,神經網絡是由大量簡單的神經元組成的,每個神經元雖然結構簡單,但是它們組合到一起并行活動時,卻能爆發出較快較強的速度來。我們可以利用神經網絡的上述特點,將之應用于模式識別、自動控制、優化計算和聯想記憶、軍事應用以及決策支持系統中。

          2.2財務管理神經網絡集成智能財務DSS的必然性在企業經營管理、政府機構財務活動中,人們時常面臨著財務決策。人們往往需要根據有關的理論及經驗制定出一系列的衡量標準。這種評價是一個非常復雜的非結構化決策過程,一般都是由內行專家根據一定的專業理論憑經驗和直覺在收集大量不完全、不確定信息基礎上建立起多級指標體系。但在這種指標體系中,各種指標之間的關系很難明確,而且還受評價者的效用標準和主觀偏好所左右。因此,很難在指標體系和評價目標間建立起準確的定量或定性模型。因此,我們需要采用一種可處理不確定性、不完全性信息的評價方法以支持決策。自然,利用人工神經網絡構造系統模式來支持這類評價決策問題是目前財務管理智能決策支持系統的一種發展趨勢和必然趨勢圈。

          2.3財務管理神經網絡集成智能DSS系統框架神經網絡智能決策支持系統主要以知識、數據和模型為主體,結合神經網絡進行推理與數據開采。圖2給出了神經網絡智能決策支持系統研究框架『2I。研究中有兩個重點,即神經網絡推理系統和神經網絡數據開采系統。

          2.3.1神經網絡數據開采系統神經網絡數據開采時利用神經網絡技術協助從數據中抽取模式。數據開采有五項基本任務:相關分析、聚類、概念描述、偏差監測、預測。常用的前饋式神經網絡,如BP網絡,可用于進行概念描述及預測。對向傳播(CounterPropagation,簡稱CP)神經網路可用來進行統計分析和聚類。CP網絡是美國神經計算專家RobertHecht—Nielsen提出的一種新型特征映射網絡,其網絡結構分輸入、競爭、輸出三層。該網絡吸取了無教師示教型網絡分類錄活、算法簡練的優點,又采納了有教師示教型網絡分類精細、準確的好處,使兩者有機地結合起來。由競爭層至輸出層,網絡按基本競爭型網絡學習規則得到各輸出神經元的實際輸出值,并按有教師示教的誤差校正方法調整由競爭層至輸出層的鏈接權。經過這樣反復地學習,可以將任意輸入模式映射為輸出模式。

          2.3.2財務管理神經網絡推理系統財務管理神經網絡推理系統主要利用神經網絡的并行處理機制來解決傳統推理方法中存在的“組合爆炸”、“無窮遞歸”,等問題。在神經網絡系統中,計算與存儲時完全合二為一的,即信息的存儲體現在神經元互連的分布上,并以大規模并行方式處理。流動的過程就是從部分信息找到全部信息的過程,這就是聯想記憶的基本原理。若視動力系統的穩定吸引子為系統計算能量函數的極小點,系統最終會流向期望的最小點,計算也就在運動過程中悄悄地完成了。因而,可用雙向聯想記憶(BAM)網絡或CP網絡實現并行推理。CP網絡具有特殊的聯想推理映射功能。將輸入學習模式和期望輸出模式取為同一模式,且將之分為x和Y兩部分。網絡通過提供的樣本對進行充分的學習后,就可用來進行模式問的聯想推理。

          3財務管理神經網絡智能DSS研究展望

          當前世界上最熱門的研究課題,是模仿人類的思維方式來解決實際問題。專家系統和人工神經網絡是比較常用的技術,但由于自身的局限性,它們都側重于人類思維方式的某一方面。平時解決簡單的問題的時候還好,但真遇到解決復雜的問題的時候,它就顯得力不從心了,所以,這個時候我們可以將兩種技術結合起來解決,除了它們要自身不斷發展和完善外,還要注重兩者的協調配合,神經網絡DSS未來的發展趨勢就是依靠這兩種技術不斷結合,從而能幫助我們解決更多的實際問題。

          3.1財務管理神經網絡支持專家系統常見的財務管理神經網絡支持專家系統主要包括幾個方面:知識維護、知識表示、知識獲取、推理等,我們針對各個步驟展開討論。

          3.1.1知識維護。如果知識是通過人工神經網絡來獲取的,我們就可以同樣利用人工神經網絡,來讓維護工作變得更加方便快捷,維護可以通過人工神經網絡來自動完成,我們需要做的只是重新運行網絡模塊,或者重新訓練網絡模塊,又或是增加新的網絡模塊。

          3.1.2推理。一般的專家系統只是求解專門性問題,應用的領域非常狹窄,同時由于控制策略不靈活,推理方法簡單,容易出現一些這樣或那樣的問題,推理效率低、速度慢。人-T-~$經網絡可以解決這一問題,從根本上提升工作效率,提高工作速度,它可以拓展知識空間,不只局限在狹窄的領域。

          3.1.3知識表示。很多專家知識事實上很難用規則表示出來,但在現實工作中,我們大部分財務管理專家卻都采取這種方式,無論是直接的還是間接的。其它的知識表示方法也存在著同樣的問題。為了解決這一問題,我們可以采用人工神經網絡系統來將知識提供給專家系統,這樣做就可以避免這一問題,當專家系統需要相應知識時,就不需要用規則來表示知識,直接調用人工神經網絡就可以了。

          3.1.4知識獲取。人工神經網絡可以幫專家系統來獲取知識,知識獲取是通過人機對話的形式進行的。首先,專家系統向專家提出問題,人工神經網路則負責對這些信息進行收集、處理,在人工神經網絡的聯結權值中已經具有通用的知識,所以這一步驟會很方便,之后再產生相應的數據結果。接著,專家系統在對這些數據進行進一步的分析。在這一過程中,專家系統只運用很少的規則就可以獲得相關的知識,大大提高了工作效率。

          3.2財務管理專家系統支持神經網絡財務管理專家主要通過三種方式來對神經網絡提供必要的支持:第一,提供相應的必要的解釋;第二,進行預處理:第三,聯合應用。

          3.2.1解釋。作為專家系統的人工神經網絡,它做不到同其他專家系統那樣,具體詳細地跟蹤問題求解的過程,以獲得答案的原因,它只能依靠增加一個小型的專家來解決這一問題,以獲得答案的原因,這個專家系統可以反向推理,從結果到初始輸入,系統提供具體的解決方法。在這種模式中,經過訓練的人工神經網絡來解決問題。當用戶要求解釋的時候,就可以通過網絡輸入一個并行的專家系統。

          3.2.2預處理。對于人工神經網絡來說,處理數據這項工作比較難。專家系統可以幫助人工神經做好這些工作:選擇合適的收斂算法,確定訓練神經網絡的樣本的數量,選擇合適的神經網絡。收集正確數據的工作,對于人工神經網絡來說至關重要,事先對它們進行預處理,可以確保各項工作順利的完成。

          3.2.3聯合應用。將一個復問題分解為幾個子問題,如下圖3所示,再將各個子問題來逐個解決,這就是我們所常說說的聯合應用方法。它可以直接采用人工神經網絡、專家系統以及其種可能的方法來解決問題,指導實際應用。我們當前計算機所要解決的主要問題,是如何解決半結構化和非結構化的決策等問題,它是人們在日常生活中所經常遇到的,在財務活動中會大量存在。如何更科學、更合理地處理這些問題是我們當前工作的主要方向。運用人工神經網絡技術處理半結構化和非結構化的決策是一種智能化的求解方式。但是此種方式并不是完美無缺的,它還存在著一定程度上的缺點,我們只有改善這種技術上的不成熟,將智能化研究進行到底,才能讓神經網絡決策支持系統的研究出現新的進展。